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The thermal component of the 8 GeV�c p 1 Au data of the ISiS Collaboration is shown to follow
the scaling predicted by Fisher’s model when Coulomb energy is taken into account. Critical exponents
t and s, the critical point �pc , rc, Tc�, surface energy coefficient c0, enthalpy of evaporation DH , and
critical compressibility factor CF

c are determined. For the first time, the experimental phase diagrams,
�p, T � and �T , r�, describing the liquid vapor coexistence of finite neutral nuclear matter have been
constructed.
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Nuclear multifragmentation, the breakup of a nuclear
system into several intermediate sized pieces, has been
frequently discussed in terms of equilibrium statistical
mechanics, and of its possible association with a phase
transition [1–3]. However, to this point much uncertainty
remains regarding its nature, in particular, whether multi-
fragmentation is a phase transition and if so, whether it is
associated with the liquid to vapor phase transition. This
Letter shows that (i) high quality experimental data contain
the signature of a liquid to vapor phase transition through
their strict adherence to Fisher’s droplet model when modi-
fied to account for Coulomb energy; (ii) the two-phase
coexistence line is observed via the scaled fragment yields
and extends over a large energy/temperature interval up to
the critical point; (iii) two critical exponents, as well as
the critical temperature, the surface energy coefficient, the
enthalpy of evaporation, and the critical compressibility
factor can be directly extracted; and (iv) the nuclear phase
diagram can be constructed.

In past investigations of the relationship between nu-
clear multifragmentation and a liquid to vapor phase tran-
sition, critical exponents were determined [1,4–7], caloric
curves were examined [8], and the observation of negative
heat capacities was reported [9]. Other studies showed two
general, empirical properties of the fragment multiplicities
called reducibility and thermal scaling [3,10,11]. Re-
ducibility, an indication of stochastic fragment production,
refers to the observation that for each energy bin the frag-
ment multiplicities are distributed according to a binomial
or a Poissonian law. Thus, their multiplicity distributions
can be reduced to a one-fragment production probability
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according to a binomial or Poissonian distribution. Ther-
mal scaling refers to the feature that the average fragment
yield �N � behaves with temperature T as a Boltzmann fac-
tor: �N� ~ exp�2B�T�.

The features of reducibility and thermal scaling are in-
herent to any statistical model. In particular, they are
present in Fisher’s droplet model [12] and will be observed
in any system that it describes [7,13]. Fisher’s model de-
scribes the aggregation of molecules into clusters in a va-
por, thus accounting for its nonideality. The abundance of
a cluster of size A is given by

nA � q0A2t exp

µ
ADm

T
2

c0´As

T

∂
, (1)

where nA � NA�A0 is the number of droplets NA of mass
A, normalized to the system size A0; q0 is a normaliza-
tion constant depending only on the value of t [14]; t is
the topological critical exponent; Dm � m 2 ml , and m

and ml are the actual and liquid chemical potentials, re-
spectively; c0´As is the surface free energy of a droplet
of size A; c0 is the zero temperature surface energy co-
efficient; s is the critical exponent related to the ratio of
the dimensionality of the surface to that of the volume;
and ´ � �Tc 2 T��Tc is the control parameter, a measure
of the distance from the critical point, Tc. At coexistence
(Dm � 0), Eq. (1) reduces to a Boltzmann factor with a
“barrier” B � c0As (the cost to produce the surface of a
cluster of size A) and thermal scaling is observed.

Recently, multifragmentation data from the Indiana
Silicon Sphere (ISiS) Collaboration was shown to exhibit
both reducibility and thermal scaling [15,16]; thus it
© 2002 The American Physical Society 042701-1
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follows that Fisher’s model may describe the ISiS data.
To verify this, the ISiS charge yields from the Alternating
Gradient Synchrotron (at BNL) experiment E900a of
8 GeV�c p 1 Au fragmentation data (see Fig. 1a) were
fit to a modified form of Eq. (1) which incorporates, in an
approximate manner, the Coulomb energy release when a
particle moves from the liquid to the vapor:

nA � q0A2t exp

µ
ADm 1 ECoul

T
2

c0´As

T

∂
, (2)

where ECoul is given by

ECoul �
e2

4pe0

�Z0 2 Z�Z
r0��A0 2 A�1�3 1 A1�3�

�1 2 e2x´� .

(3)

Here Z0 is the charge of the system and r0 � 1.2 fm. This
energy vanishes as x´ at the critical point where no dis-
tinction exists between liquid and vapor. The mass of a
fragment prior to secondary decay A was estimated by
multiplying the measured fragment charge Z by an A�Z
ratio of 2 and by a factor of �1 1 �E��Bf ��, where E�

is the reconstructed excitation energy of the event and Bf

is the binding energy of the fragment. The temperature
T was determined by assuming a degenerate Fermi gas,
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FIG. 1 (color). (a) Arrhenius plots for representative charges,
the fragment mass yields versus inverse temperature for the ISIS
data. (b) Fragment mass yields for various values of E�. Solid
curves are from a fit to Fisher’s model. See Fig. 2 for symbol
definition. Error bars are smaller than the size of the points.
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T �
p

E��a and a � A0�a. To accommodate the empiri-
cally observed change in a with excitation energy [17], it
is assumed that a � 8�1 1 E��B0� [18] with B0 as the
binding energy of the fragmenting system.

Over 500 data points for 1.5 # E� # 6.0 MeV�nucleon
and 5 # Z # 15 were simultaneously fit to Eq. (2) with
the parameters of the modified Fisher model (Dm, x, t, s,
c0, and Tc) allowed to vary to minimize chi-squared (see
Fig. 1). Fragments with Z , 5 were not considered in the
fit because (i) Fisher’s model expresses the mass/energy of
a fragment in terms of bulk and surface energies and this
approximation is known to fail for the lightest of nuclei
where structure details (shell effects) dominate, and (ii) for
the lightest fragments equilibrium and nonequilibrium pro-
duction cannot always be differentiated. Fragments with
Z . 15 were not elementally resolved [19], and were also
excluded.

While analyses have been performed on other multifrag-
mentation data in the past [20–22], those efforts dealt with
inclusive data sets. The present work makes use of the high
statistics, exclusive ISiS E900a data set and bins the events
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FIG. 2 (color). The scaled yield distribution versus the
scaled temperature for the ISiS data (upper) and d � 3 Ising
model calculation (lower). For the Ising model, the quantity
�nA�q0A2t��10 is plotted against the quantity As´�1.435T .
Data for T . Tc is scaled only as nA�q0A2t .
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in terms of their reconstructed excitation energy [23]. In
addition, explicit use of Fisher’s expressions for the bulk
and surface energies and the inclusion of ECoul allows Dm
and c0 to be determined directly from the data.

The behavior of the data for the �nA, A, T � surface is re-
produced over a wide range in E� and Z as shown in both
Arrhenius plots (Fig. 1a) and fragment yield distributions
(Fig. 1b). The results of scaling the data according to
Eq. (2) are shown in Fig. 2. The fragment mass yield
distribution is scaled by the Fisher’s power law prefactor,
the bulk term, and the Coulomb energy: nA�q0A2t 3

exp��DmA 1 ECoul��T�. This quantity is plotted against
the temperature scaled by Fisher’s parametrization of the
surface energy: As´�T . The scaled data collapse to a
single line over 6 orders of magnitude, precisely the be-
havior predicted by Fisher’s model. This line is the liquid-
vapor coexistence line, as shown below, and provides direct
evidence for the liquid to vapor phase transition in excited
nuclei. It may be worth noticing that Fig. 2 represents the
first extensive test ever for any physical system of Fisher’s
formula [Eq. (1)].

To illustrate the generality of this type of scaling, Fig. 2
shows the scaled cluster distributions from a d � 3 Ising
model calculation [13] a system known to model liquid-
vapor coexistence up to Tc. The perfect scaling of the
cluster yields according to Eq. (1) demonstrates liquid-
vapor-like coexistence up to Tc.

The value of t � 2.18 6 0.14 is in the range predicted
by Fisher’s model and s � 0.54 6 0.01 is close to the
value expected for a three dimensional system, �2�3.
The Dm � 0.06 6 0.03 MeV�nucleon may indicate that
the system is a slightly supersaturated vapor. The value of
x is 1.00 6 0.06. The value of c0 � 18.3 6 0.5 MeV is
close to the value of the surface energy coefficient of the
liquid-drop model: 16.8 MeV. The values of the critical
exponents determined here are in agreement with those de-
termined from other multifragmentation data [5,6] and the
value of the excitation energy at the critical point E�

c �
3.8 6 0.3 MeV�nucleon is in the neighborhood of the
value observed in the EOS analysis (E�

c 	 4.75 MeV�
nucleon) [6,7,24]. The two experiments use a different
method to distinguish particles resulting from the initial
projectile-target collision from fragments formed after-
wards; this difference leads to EOSE� 	 1.2ISiSE� [23].
The value of EOSE�

c corresponds to the steepest decrease
in the mass of the largest fragment and to the maximum
value of its variance in the EOS data [6,24]. The EOS
analysis also relied on the assumptions that Dm 	 0 and
that the effects of the Coulomb energy were small; the
present effort tests both assumptions and finds them to be
approximately valid. The extracted critical temperature
Tc � 6.7 6 0.2 MeV is comparable to theoretical esti-
mates for small nuclear systems [25,26].

Using the values of the parameters determined above
and Eq. (2), the coexistence curve observed in the scaled
fragment yields in Fig. 2 can be cast into a more familiar
042701-3
form. Fisher’s model assumes that the nonideal vapor can
be approximated by an ideal gas of clusters. Accordingly,
the quantity nA is proportional to the partial pressure of
a fragment of mass A and the total pressure due to all of
the fragments is the sum of their partial pressures: p�T �P

nA. In the actual experiment, this pressure is virtual; it is
the pressure the vapor would have to provide the backflow
needed to keep the source at equilibrium. The reduced
pressure is given by

p
pc

�
T

P
nA�T �

Tc
P

nA�Tc�
. (4)

The coexistence line for finite neutral nuclear matter is then
obtained by using the nA�T , Dm � 0, ECoul � 0� from
Eq. (2) in Eq. (4). This is shown in Fig. 3. Recalling the
Clausius-Clapeyron equation dp�dT � DH�TDV , one
obtains p�pc � exp�DH�Tc�1 2 Tc�T�� which describes
several fluids up to Tc [27]. Fitting the coexistence line and
using the above value of Tc gives DH � 26 6 1 MeV,
the enthalpy of evaporation of a cluster from the liquid.
This value, after a correction pV � T , gives a value for
DE 	 22 MeV. Since the gas described by Fisher’s model
is nonideal, the average cluster is greater in size than
a monomer. The average size of a fragment in the region
of the p-T coexistence line obtained from Eq. (2) and the
experimentally determined parameters is 1.5. Thus the
DE�nucleon becomes 	15 MeV, remarkably close to the
nuclear bulk energy coefficient.

The system’s density can be found from r �
P

AnA,
and the reduced density from

r

rc
�

P
AnA�T �P
AnA�Tc�

. (5)
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FIG. 3. The reduced pressure-temperature phase diagram: the
thick line shows the calculated coexistence line, the points show
selected calculated errors, and the thin line shows a fit to the
Clausius-Clapeyron equation.
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FIG. 4. The reduced density-temperature phase diagram: the
thick line is the calculated low density branch of the coexistence
curve, the points are selected calculated errors, and the thin lines
are a fit to and reflection of Guggenheim’s equation.

With Dm and ECoul set to 0 in Eq. (2), Eq. (5) yields the
low density branch of the coexistence curve of finite neutral
nuclear matter, shown in Fig. 4. Following Guggenheim
it is possible to determine the high density branch as well:
empirically, the r�rc-T�Tc coexistence curves of several
fluids can be fit with the function [28]

rl,y

rc
� 1 1 b1

µ
1 2

T
Tc

∂
6 b2

µ
1 2

T
Tc

∂1�3

, (6)

where the parameter b2 is positive (negative) for the liquid
rl (vapor ry� branch. It was later recognized that the
power of 1�3 was the critical exponent b. Using Fisher’s
model, b can be determined from t and s: b � �t 2
2��s [12]. For this work b � 0.33 6 0.25. Using this
value of b and fitting the coexistence curve from the ISiS
E900a data with Eq. (6) one obtains an estimate of the full
ry branch of the coexistence curve and changing the sign
of b2 gives the full rl branch of the coexistence curve of
finite neutral nuclear matter. If normal nuclei exist at the
T � 0 point of the coexistence curve and the parametriza-
tion of the coexistence curve in Eq. (6) is used, then the
critical density is found to be rc � 0.3r0. The critical
compressibility factor CF

c � pc�Tcrc is 0.25 6 0.06, in
agreement with the values for several fluids [29]. Using
Tc and rc from above in combination with CF

c gives a
critical pressure of pc � 0.07 MeV�fm3.

In conclusion, the ISiS data contain the signature of a
liquid to vapor phase transition via their strict adherence
to Fisher’s model.Through Fisher’s scaling of the fragment
042701-4
yield distribution (Fig. 2), the two-phase coexistence line
has been determined over a large energy/temperature in-
terval extending up to the critical point. Fisher’s formula
[Eq. (1)] has been extensively tested and verified for the
first time for any physical system. The critical exponents
t and s as well as the critical temperature Tc, the surface
energy coefficient c0, the enthalpy of evaporation DH, and
the critical compressibility factor CF

c have been extracted
and found to agree with accepted values. Finally, pc and
rc have also been determined, giving the first complete ex-
perimental determination of the critical point and the full
phase diagram of finite neutral nuclear matter.
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