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We introduce a natural and simple way to implement the regularization scheme of the Hartree-Fock-
Bogoliubov equations with zero range pairing interaction. The renormalization scheme proves to be
equivalent to a simple energy cutoff with a position dependent running coupling constant.

DOI: 10.1103/PhysRevLett.88.042504

More than forty years after the pioneering work of Bohr,
Mottelson, and Pines [1] there is no need to reiterate
again the relevance of pairing correlations in nuclei. It
is well established that nuclei are s-wave “superconduc-
tors” in the so-called weak coupling limit, when the pair-
ing gap is much smaller then the Fermi energy A < ep =
hzk% /2m (kp is the Fermi wave vector). In this limit,
one can show that the rms radius of the Cooper pair
(in infinite matter) significantly exceeds the interparticle
separation, /ikp/mA > 1/kp [2], and the radius of the
nucleon-nucleon interaction as well. As in the case of
the deuteron, the details of the two-particle interaction
at distances smaller than or comparable with the inter-
action radius should be irrelevant and the bulk Cooper
pair properties should be described basically by a single
constant, derivable from a suitably chosen zero range in-
teraction model. (We shall not address here corrections
beyond the leading order, such as effective range effects.)
One encounters typically no insurmountable difficulties in
introducing a local Hartree-Fock (HF) (or Kohn-Sham)
Hamiltonian h(r) [3,4]. If one can adopt the approxima-
tion of a zero range two-body interaction in the pairing
channel as well, then the Hartree-Fock-Bogoliubov (HFB)
equations become

[h(r) — plui(r) + A(r)vi(r) = E;ju;(r), (1)
A*(Pui(r) — [h(r) — plvi(r) = Ejvi(r). (2

Here u;(r) and v;(r) are the quasiparticle wave functions,
A(r) = — 55%‘(2;) is the local pairing field, u is the chemical
potential, E, is the ground state energy of the system, and
v(r) is the anomalous density. In all the formulas presented
here we shall not display the spin degrees of freedom. If
one takes at face value Eqgs. (1) and (2), one can show that
the diagonal part of the anomalous density matrix v(r,r)
diverges, since when |r; — r;| — 0 the anomalous density
v(ry,r2) has the singular behavior,

v(ri,ry) = Z v (r)ui(r;) « =l 3)

and the local pairing field A(R) cannot be defined [5-7].

In metals this type of singularity does not play a notice-
able role, because the summation over the single-particle
states is cut off at energies of the order of the Debye energy
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wp X ep. The single-particle density of states is essen-
tially constant in an energy window of width O (wp) <
€r, and the expression for the anomalous density has
only an infrared logarithmic divergence. This logarith-
mic divergence is due to states near the Fermi surface
and has nothing to do with the ultraviolet divergence due
to states far away from the Fermi surface, which leads
to the 1/|r; — r,| singularity discussed here. The in-
frared divergence leads to the notorious nonanalytical de-
pendence of the gap on the coupling constant, namely
A = wpexp(—1/VN), where V is the strength of the in-
teraction and N is the single-particle density of states at
the Fermi energy ep.

In nuclei and especially in very dilute fermionic atomic
systems, where krro << 1 and ry is the radius of the inter-
action, there is effectively no well-defined cutoff and one
needs to regularize the theory. A finite range interaction
will provide a natural cutoff at single-particle energies of
the order of &, ~ K2/ mrg , when the fast spatial oscilla-
tions of the quasiparticle wave functions u;(r), v;(r) will
render the nonlocal pairing field A(rq, ;) ineffective. Even
though the presence of a finite range of the interaction in
the pairing channel formally removes the ultraviolet diver-
gence of the gap, it is very difficult to come to terms with
the fact that a cutoff at an energy of the order of %%/ mrg
could be responsible for the definition of the gap in the case
of regular nuclei and the case of very dilute nuclear matter
as well. The characteristic depth of the nucleon-nucleon
interaction potential, which is of the order of n?/ mr% , be-
ing the largest energy in the system, can be effectively
considered to be infinite in the case of dilute systems. A
well-defined theoretical scheme for the calculation of a lo-
cal pairing field should lead to a converged result when
only single-particle states near the Fermi surface are taken
into account.

Most of the calculational schemes suggested so far for
infinite systems reduce to replacing a zero range poten-
tial by a low energy expansion of the vacuum two-body
scattering amplitude [2,8—15]. The traditional approach in
the calculations of finite nuclei consists, however, of in-
troducing a simple energy cutoff, while the pairing field
is computed by the means of a pseudo-zero-range interac-
tion. In this approach the effective range of the interaction
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is obviously determined by the value of the energy cutoff
and the two-body coupling constant in the pairing channel
is chosen accordingly [16]. Such a pure phenomenologi-
cal approach lacks a solid theoretical underpinning and al-
ways leaves the reader with a feeling that “the dirt has
been swept under the rug.” Another solution favored by
other practitioners is to use a finite range two-body in-
teraction from the outset, such as the Gogny interaction
[17]. Besides the fact that the ensuing HFB equations
are much more difficult to solve numerically, such an ap-
proach also lacks the elegance and transparency of a lo-
cal treatment and this seemingly simple recipe is indeed
as phenomenological in spirit as the treatment based on a
pseudo-zero-range interaction, with an explicit energy cut-
off. Moreover, in spite of the feeble arguments often put
forward in favor of a finite range interaction in HFB calcu-
lations, the only real argument is the fact that the pairing
field would otherwise diverge, and there is no mean-field
observable which would be noticeably different in the case
of a finite range interaction.

The only attempt to implement a consistent regulariza-
tion scheme for finite systems that we are aware of is that
of Ref. [7]. In agreement with the analysis of Ref. [5]
the authors of Ref. [7] conclude that in the case of a zero
range two-body interaction the anomalous density has a
1/|ry — r;| singularity. The regularization schemes for in-
finite homogeneous systems amounts to subtracting a term
proportional to 1/k* in the gap equation in momentum
representation [2], which in coordinate representation cor-
responds naturally to a 1/|r; — ry| term as well. Since
the divergence in the anomalous density v (r{,r;) is due to
large momenta and thus short distances, it is not surprising
that the character of the divergence is not affected by the
size of the system. Bruun et al. advocate the use of the fol-
lowing calculational procedure for the anomalous density.
To begin, one represents the anomalous density as [18]

A(I‘) ‘/’t (r1)¢l(r2)i|

v(ri,r) = Z [U,-*(ﬁ)ui(rz) +

E;>0 K=&
- %GO("IJQ m), 4
[h(r) — &li(r) =0, (5)

[u — h(r)]Go(ri,ro, p) = 6(ry — ra), (6)

where r = (r; + r2)/2. One can easily justify this
subtraction scheme in infinite homogeneous matter, since
vi(r)ui(r) = Ayl (r)i(ra)/2/(s; — w)* + A2, In
the limit r; — r, the sum over single-particle states in
Eq. (4) converges now, and one has only to extract the
regulated part of the propagator Go(r,r2, 1), using the
pseudopotential approach [8]
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.= . A(r)i; (r)ii(r)
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and obtaining for the local pairing field

4ar|aln? ) A(r) i (r)i(r)
Alr) = ——— v (r)u; —
0= 3 [ + SO0

47T|a|ﬁ A(I‘) ;')eg r, ), (9)

m

where a is the two-partlcle scattering length (a < 0). The
renormalization procedure and the extraction of the regu-
lated part from various diverging quantities are completely
analogous to the familiar procedures in quantum field the-
ory, with the only difference being that in this case ev-
erything is performed in coordinate space. One literally
“throws away” the diverging terms and retains the non-
vanishing finite contributions.

The approach suggested in Ref. [7] has, however, two
related problems and, as formulated, is applicable for sys-
tems in a harmonic trap only and does not apply to atomic
nuclei or other self-sustaining systems. First of all, after
the divergence has been eliminated, the regulated expres-
sions for the anomalous density and for the pairing gap,
Eqgs. (7) and (9), are defined entirely in terms of states
in a certain neighborhood of the Fermi level, since the
corresponding sums converge rather quickly. Only when
one can establish a one-to-one correspondence between
the HFB terms v; (r)u;(r) and the corresponding HF ex-
pressions A(r)s; (r);(r)/2(n — &;) is it clear how to
evaluate Eqgs. (7) and (9). There is no one-to-one corre-
spondence for self-sustaining systems [5,19], where suffi-
ciently deep bound hole states lie in the continuum and
where often there is no one-to-one correspondence be-
tween the HF and HFB spectra around the Fermi level. In
the case of nuclei very close to the nucleon drip lines the
HFB spectra are continuous essentially everywhere, while
the HF spectra are not, and the one-to-one correspondence
between HFB and HF is absent. The second and the most
difficult aspect of the approach suggested in Ref. [7], how-
ever, is the fact that it requires the determination of the reg-
ular part of the single-particle Green function Go (R, ),
for which there is so far no clear computational scheme
in the case of an arbitrary self-consistent field. These two
problems are to a large extent related, as only the whole
expressions (7) and (9) are uniquely defined, but not each
separate part.

Our suggestion amounts to a simpler renormalization
procedure. First, we introduce an explicit energy cutoff
E. in evaluating the anomalous density. In this way we
can evaluate separately the HFB and HF sums in Eqgs. (4),
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(7), and (9) irrespective of the existence of the one-to-one
correspondence discussed above. The final result is inde-
pendent of E, if this is chosen appropriately. Second, we
remark that there is no compelling reason to use the exact
HF single-particle wave functions, energies, and propaga-
tor in Egs. (4), (7)—(9) and, in order to construct the regu-
lator, one can use a Thomas-Fermi approximation for the
relevant quantities. Since the divergence has an ultraviolet
character, the Thomas-Fermi approximation is particularly
well suited [20]. Thus we arrive at the following relations:

_ mexplikp(r)lri — ra]
2mh%|ry — 1yl

Golri,ro,u — U(r)] =

. m _ ikp(r)m
27k — ol 27 2
+ O(lr1 — r2l), (10)
[ A(r)kp(r)
Vreg(r) = ve(r) + %
ke(r)
8O [ ke ,
4m= Jo = g —U@) + iy
(11
= Vc(r)
_ A(r)mkc(r){ _ ke(r) nkc(r) + kF(r)}
272 )2 2k.(r)  ko(r) — kp(r))’
(12)
ve(r) = D v (E)ur), (13)
E,<E.
h2V?
hr) = — - + U(r), (14)
21,2
EC=M+U(F)—M, (15)
2m
212
= R, (16)
2m

where the cutoff energy E. is chosen sufficiently far away
from the Fermi level to ensure that the right-hand sides
of Egs. (11) and (12) have converged. As usual, one has
to take the limit y — 0+ at the end of the calculations.
The local wave vector kg(r) is real only in the physically
allowed region of the Fermi level, where the regularized
part of the propagator is imaginary. This imaginary part
of the regularized propagator is, naturally, exactly canceled
by the corresponding imaginary part of the momentum
truncated propagator in Eq. (11). If the Fermi momentum
becomes imaginary (outside nuclei, for example), one can
easily show that vy, (r) is still real. The pairing field has
thus the simple expression
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A(r) = —gest(r)v(r) = _ereg(r), (I7)

mk.(r) [1 _ kp(r) | ke(r) + kF(")}
272 K2 2k, (r) T ke(r) — kp(r) )’
(18)

where g = 47 h*a/m. Surprisingly, these relations look
very much like a simple position or density dependent
renormalization of the coupling constant. For a typical
nuclear potential which monotonically increases with the
radial coordinate [dU(r)/dr > 0], one can easily show
that dgess(r)/dr > 0; thus the effective pairing interac-
tion is stronger inside than outside nuclear matter (re-
member g < 0). This is in stark contrast to the behavior
one would obtain by using the popular energy cutoff of a
g8(ry — rp) interaction, namely, the vacuum renormaliza-
tion scheme [16]. In this case the effective coupling con-
stant is gvac(r) = g/[1 — gmk.(r)/2mw*k*] and one can
then easily show that dgya (r)/dr < 0if dU(r)/dr > 0.

It is instructive to apply this recipe to the case of infinite
homogeneous matter. After a few simple manipulations,
one can show that the equation for the gap reads as follows:

L _1_

8eff (r) 8

In

ol A
F Jo \/(kz _ k%)z + k;l:
7 [ 2kclal kFlal1 ke + kp}
2krlal T T nkc —kr 1’

(19)

where kp = 2mA/R2. Using the methods described
in Refs. [2,9-13], one would not get the term with
the log function. The technical reason is that we used
A/(e; — ) instead of A/g; in Egs. (4), (7), (9), and (11)
[21], which enhances the convergence of the correspond-
ing sums or integrals discussed above. Parametrically we
are allowed to make such a substitution as long as
|kra| << 1; otherwise one should consider effective
range corrections and higher partial waves. Even though
the momentum cutoff k. appears explicitly here, once
this momentum cutoff is sufficiently large, there is no
dependence of the gap on the cutoff momentum.

When evaluating the total energy of the system, one has
to be careful and calculate the expression [12]

2
B = [ @r| 5 rln) = A0 | + B 0)
where E,y is the usual HF potential energy con-
tribution, since the Kinetic energy density 7.(r) =
2 Y gk |Vug(r)|* diverges in a similar fashion as v.(r)
with E,, but E,; does not.

We have implemented this renormalization scheme for
the pairing field for both self-consistent and non-self-
consistent calculations of spherical nuclei. The normal
and anomalous densities were computed following the
complex energy integration technique extensively used by
Fayans and his collaborators [15]. In order to illustrate the
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FIG. 1. The neutron pairing field (17) as a function of the

radial coordinate and the cutoff energy E.. Upward various
curves correspond to E. = 20,30, 35,40, 45, and 50 MeV, re-
spectively. On the scale of the figure the last two curves are
indistinguishable.

convergence properties we present in Fig. 1 the neutron
pairing field A(r) obtained as a solution of the Egs. (1),
(2), (17), and (18) for a range of cutoff energies E.. The
calculations were performed for a simple Woods-Saxon
potential with fixed parameters corresponding to a ''Sn
nucleus [22] and for a fixed value of the chemical
potential u = —0.1 MeV (essentially at the neutron
drip line). The value of the bare coupling constant is
g = —200 MeV fm>. The total energy converges equally
fast with E.. The reasons why convergence is achieved
for E. = O(er) and how one can improve on this aspect
are discussed in Ref. [23].

In conclusion, we have presented a renormalization pro-
cedure for the HFB equations in the case of zero range
pairing interaction, which is easy to implement for any
type of finite or infinite systems and which converges very
fast as well. A very interesting feature of this approach
is its similarity to a density dependence of the pairing in-
teraction. The numerical implementation of the present
renormalization scheme is straightforward and amounts to
very small changes of the existing codes.
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