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We consider the time evolution of nonequilibrium quantum scalar fields in the O(N) model, using
the next-to-leading order 1/N expansion of the two-particle irreducible effective action. A compari-
son with exact numerical simulations in 1 + 1 dimensions in the classical limit shows that the 1/N
expansion gives quantitatively precise results already for moderate values of N. For sufficiently high
initial occupation numbers the time evolution of quantum fields is shown to be accurately described by
classical physics. Eventually the correspondence breaks down due to the difference between classical

and quantum thermal equilibrium.
DOI: 10.1103/PhysRevLett.88.041603

In recent years we have witnessed an enormous increase
of interest in the dynamics of quantum fields out of equi-
librium. Much progress has been achieved for systems
close to thermal equilibrium or with effective descriptions
based on a separation of scales in the weak coupling limit
[1]. Current and upcoming relativistic heavy-ion colli-
sion experiments provide an important motivation to find
controlled nonperturbative approximation schemes which
yield a quantitative description of far-from-equilibrium
phenomena from first principles.

Practicable nonperturbative approximations may be
based on the two-particle irreducible (2PI) generating
functional for Green’s functions [2]. Recently, a sys-
tematic 1/N expansion of the 2PI effective action has
been proposed for a scalar O(N) symmetric quantum
field theory [3]. This nonperturbative approach extends
previous successful descriptions of the large-time behavior
of quantum fields [4,5], which employ the loop expansion
of the 2PI effective action relevant at weak couplings
[2,6]. At next-to-leading order (NLO) the 1/N expan-
sion of the 2PI effective action has been solved for the
quantum theory in 1 + 1 dimensions [3]. The approach
overcomes the problem of a secular time evolution, which
is encountered in the standard 1/N expansion of the 1PI
effective action beyond leading order [7].

Our purpose in this Letter is to establish that the 1/N
expansion at NLO gives quantitatively precise results
already for moderate values of N. We therefore have a
small nonperturbative expansion parameter at hand and a
controlled description of far-from-equilibrium dynamics
becomes possible. As an application we compare quantum
and classical evolution and demonstrate that the nonequi-
librium quantum field theory can be described by its
classical field theory limit for sufficiently high initial
occupation numbers. We show that eventually the cor-
respondence breaks down due to the difference between
classical and quantum thermal equilibrium.

Employing the classical statistical field theory limit, we
compare the 1/N expansion of the 2PI effective action
at NLO with the exact result, which includes all orders
in 1/N. The time evolution of classical nonequilibrium
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Green’s functions can be calculated exactly, up to con-
trolled numerical uncertainties, by integrating the micro-
scopic field equations of motion. This allows one to obtain
a direct comparison [8]. Apart from benchmarking ap-
proximation schemes employed in quantum field theory,
the importance of the classical field limit for the ap-
proximate description of nonequilibrium quantum fields
is manifest.

2PI effective action.— We consider a real N -component
scalar quantum field theory with a A(¢,¢,)?/(4!N) in-
teraction in the symmetric phase (@ = 1,...,N). The 2PI
generating functional for Green’s functions can be parame-
trized as [2]
i

Gl = 3

TrinG ™! + éTrGO_lG + I',[G] + const,
(1

where Gy ' = (0 + m?) denotes the free inverse propa-
gator. The 2PI contribution I';[G] can be computed from
a systematic 1/N expansion of the 2PI effective action
[3]. Writing T,[G] = T5°[G] + T3-°[G] + ... the LO
and NLO contributions are given by [3,9]

A
I}9[G] = TN fc A x Gaa(x,X)Gpp (x, %), (2)

'MO[G] = éTrC In[B(G)]. 3)

Here C denotes the Schwinger-Keldysh contour along the
real time axis [10] and

A
B(x,y;:G) = 8¢ (x — y) + iaGab(x»Y)Gab(x»Y)~
“4)

The nonlocal four-point vertex at NLO is given by %B_l
[3]. In the absence of external sources the evolution equa-
tion for G is determined by [2]

oTI'G
_eriel %)
BGab(x9y)

We consider the O(N) symmetric case, such that

Gap(x,y) = G(x,y)04. In the following we solve
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Eq. (5), using Eqgs. (1)-(4) without further approxima-
tions numerically in 1 + 1 dimensions [3]. We compare
the outcome with results in the classical field theory
limit, using both the NLO classical approximation and the
“exact” Monte Carlo calculation [8] as described below.

Nonequilibrium time evolution.—To formulate the
nonequilibrium dynamics as an initial-value problem, we
decompose the full two-point function using the identity
G(x,y) = F(x,y) = (i/2)p(x,y) sgnc (x® — y°), where
F is the symmetric or statistical two-point function and p
denotes the spectral function [5]. Following Refs. [3,5],
Eq. (5) can be written as

(D0 + 01 y) = = [ e [ e, e 0P
+ /;)y dzof dz 2p(x,2)p(z,y),

[0+ M2otey) = = [ a2 [ de3, 206,

' ©6)

At NLO in the 1/N expansion the effective mass term

M?(x) is given by M?(x) = m? + /\N6—LZF(x,x) and the

self-energies are [3]

Sre) = s FenIree) = poteniy e,
)

2,(x,y) = —%[p(x,y)hv(x,y) + F(x,y)I,(x,y)].
(3

Here the functions Iz and I, resum an infinite chain of
bubble diagrams,

A
Ir(x,y) = _?HF(X».V)
A
+ 3 dz’ | dzl,(x,z)IIF(z,y)
0
A
-3 dz’ | dzlp(x,2)I,(z,y),
0
A
I,(x,y) = —?Hp(X,)’)

A [
+ ?/;0 dzofdzlp(x,z)ﬂp(z,y),
with
r(x,y) = —3[FX(x,y) — 10°00], )

,(x,y) = —F(x,y)p(x,y). (10)

Classical field theory limit.—The classical statistical
field theory limit of a scalar quantum field theory has
been studied extensively in the literature. An analysis
along the lines of Refs. [11-14] shows that all equations
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(6)—(10) remain the same in the classical limit except
for differing expressions for the statistical components of
the self-energy

classical limit

A
EF(X»)’) = _WF(X»Y)IF(X»Y), (11)

classical limit

Oe(x,y) = —2F2(x,y). (12)

The latter expressions are given by Egs. (7) and (9) in
the quantum theory. One observes that the classical self-
energies are obtained from the expressions in the quan-
tum theory by dropping terms with two spectral ( p-type)
components compared to two statistical (F -type) functions.
This particular relationship has been studied in great detail
in thermal equilibrium and corresponds to retaining only
contributions that are of leading order in /. It has been
systematized in terms of Feynman rules for classical and
quantum theories using the Keldysh formulation with ap-
propriate interaction vertices [11]. Note that the classical
spectral function is obtained from the quantum one by re-
placing —i times the commutator by the classical Poisson
bracket. A comparison of the classical limit in the current
approximation for N = 1 has been studied in Ref. [14].

Monte Carlo approach.— An exact nonperturbative so-
lution of the evolution of classical correlation functions in
the O(N) model can be obtained numerically in a straight-
forward manner [8]. Initial conditions are determined from
a probability functional on classical phase space. The
subsequent time evolution is solved numerically using the
classical equations of motion. In the figures presented be-
low, we have sampled 50000-80000 independent initial
conditions to approximate the exact evolution.

Far from equilibrium evolution.—We consider a
system that is invariant under space translations and
work in momentum space. We choose a Gaussian initial
state such that a specification of the initial two-point
functions is sufficient. The quantum (classical) spectral
function at initial time is completely determined from the
equal-time commutation relations (Poisson brackets). For
the symmetric two-point function we take F(0,0;p) =
[no(p) + %] /w ,,, with the initial particle number ny(p) =
ni(p) + np(p) representing a peaked “tsunami”

ns(p) = ﬂexp[—ﬁ( pl = | pil)?] in a thermal back-
ground ng(p) = [exp(w,/To) — 117! [3,5,15]. Such an
initial state is reminiscent of two colliding wave packets
[15] and provides a far-from-equilibrium initial condi-
tion. We emphasize that these initial conditions can be
implemented both in a quantum and a classical theory.
The initial mode energy is given by @, = (p* + M?)'/2,
where M is the one-loop renormalized mass in the pres-
ence of the nonequilibrium medium, determined from the
one-loop gap equation. As a renormalization condition
we choose the one-loop renormalized mass in vacuum
mg = M|,,—o = 1 as our dimensionful scale. The results
shown below are obtained using a fixed coupling constant
A/m% = 30.
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Convergence of NLO and Monte Carlo (MC) results.—
In Fig. 1 we present the two-point function F(z,0; p = 0)
in the classical field theory limit for three values of N. All
other parameters are kept constant. The figure compares
the time evolution using the 1/N expansion of the 2PI
effective action to NLO and the Monte Carlo calculation
that includes all orders in 1/N. One observes that the ap-
proximate time evolution of the correlation function shows
rather good agreement with the exact result even for small
values of N (note that the effective four-point coupling is
strong, A/6N = 2.5m% for N = 2). For N = 20 the ex-
act and NLO evolution can hardly be distinguished. A
very sensitive quantity to compare is the damping rate vy,
which is obtained from an exponential fit to the envelope
of F(z,0; p = 0). The systematic convergence of the NLO
and the Monte Carlo result as a function of 1/N can be ob-
served in Fig. 2. The quantitatively accurate description of
far-from-equilibrium processes within the NLO approxi-
mation of the 2PI effective action is manifest.

Classical behavior of nonequilibrium quantum fields.—
In Fig. 2 we also show the damping rate from the quantum
evolution, using the same initial conditions and parame-
ters. We observe that the damping in the quantum theory
differs and, in particular, is reduced compared to the clas-
sical result. In the limit N — o damping of the unequal-
time correlation function F(¢,0; p) goes to zero since the
nonlocal part of the self-energies (7)—(8) vanishes and
scattering is absent. In this limit there is no difference
between evolution in a quantum and a classical statistical
field theory.

For finite N scattering is present and quantum and clas-
sical evolution differ in general. However, the classical
field approximation may be expected to become a reliable
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FIG. 1. Unequal time two-point function F(¢,0; p = 0) at zero

momentum times the initial mass M for N = 2,10, 20. The full
lines show results from the NLO classical evolution and the
dashed lines from the exact classical evolution (MC). For N =
20 the NLO and exact evolution can hardly be distinguished.
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description for the quantum theory if the number of field
quanta in each field mode is sufficiently high. We observe
that increasing the initial particle number density leads to
a convergence of quantum and classical time evolution at
not too late times. In Fig. 3 we present the time evolu-
tion of the equal-time correlation function F(z,¢; p) for
several momenta p and N = 10. Here the particle den-
sity fg—gno(p)/M = 1.2 is 6 times as high as in Figs. 1
and 2 and, in contrast to the latter, quantum and classical
evolution at NLO follow each other rather closely. For an
estimate of the NLO truncation error we also give the MC
result for N = 10 showing a quantitative agreement with
the classical NLO evolution both at early and later times.

Quantum versus classical equilibration.—From Fig. 3
one observes that the initially highly occupied tsunami
modes (pis/mr = 2.5) “decay” as time proceeds and
the low momentum modes become more and more pop-
ulated. At late times the classical theory [8,16] and the
quantum theory [3,4] approach their respective thermal
equilibrium distribution.  Since classical and quantum
thermal equilibrium are distinct the classical and quantum
time evolutions have to deviate at sufficiently late times,
irrespective of the initial particle number density per
mode. Differences in the particle number distribution can
be conveniently discussed using the inverse slope param-
eter T(t,p) = —n(t,€,)[n(t, €,) + 11(dn/de)~! for a
given time-evolving particle number distribution n(z, €,)
and dispersion relation €,(r) [3]. Following Ref. [5] we
define the effective particle number as n(z,€,) + % =
[F(t,1';p)d,0,F(t,t"; p)]'/*|,—= and mode energy by
€,(1) = [0,0,F(t,t'; p)/F(t,1"; p)]/*|,—», which coin-
cide with the usual free-field definition for A — 0. For a
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FIG. 2. Nonequilibrium damping rates extracted from

F(t,0; p = 0) shown in Fig. 1 as a function of 1/N. Open
symbols represent exact and NLO classical evolution. One
observes a rapid convergence of the 1/N expansion at NLO to
the exact MC result. The quantum results are shown with full
symbols. In the quantum theory the damping rate is reduced
compared to the classical theory.
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FIG. 3. Nonequilibrium evolution of the equal-time two-point
function F(z,t; p) for N = 10 for various momenta p. One
observes good agreement between the exact MC (dashed line)
and the NLO classical result (full line). The quantum evolution
is shown with dotted lines. The initial particle density is 6 times
as high as in Figs. 1 and 2. At these high densities, the difference
between quantum and classical evolution is small.

Bose-FEinstein distributed particle number the parameter
T(t,p) corresponds to the (momentum independent)
temperature T(z, p) = Teq. In the classical limit the
inverse slope T (¢, p) as defined above remains momentum
dependent.

In Fig. 4 we plot the function T'(z, p) for piow = 0 and
Phigh = 2ps. Initially one observes a very different be-
havior of T(z, p) for the low and high momentum modes,
indicating that the system is far from equilibrium. Note
that classical and quantum evolution agree very well for
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FIG. 4. Time dependence of the inverse slope T(z, p), as de-
fined in the text. When quantum thermal equilibrium is ap-
proached, all modes get equal inverse slope. In contrast, for
classical thermal equilibrium the inverse slope is momentum
dependent with T(piow) > T(Phign)-
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sufficiently high initial particle number density. However,
at later times the difference between quantum and clas-
sical evolution becomes visible. The quantum evolution
approaches quantum thermal equilibrium with a momen-
tum independent inverse slope 7 = 4.7mp. In contrast, in
the classical limit the slope parameter remains momentum
dependent and the system relaxes towards classical ther-
mal equilibrium [17].
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