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Maximal Violation of Bell’s Inequalities for Continuous Variable Systems
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We generalize Bell’s inequalities to biparty systems with continuous quantum variables. This is
achieved by introducing the Bell operator in perfect analogy to the usual spin-1�2 systems. It is then
demonstrated that two-mode squeezed vacuum states display quantum nonlocality by using the general-
ized Bell operator. In particular, the original Einstein-Podolsky-Rosen states, which are the limiting case
of the two-mode squeezed vacuum states, can maximally violate Bell’s inequality due to Clauser, Horne,
Shimony, and Holt. The experimental aspect of our scheme is briefly considered.
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In their famous paper [1], Einstein, Podolsky, and Rosen
(EPR) introduced two striking aspects of quantum mechan-
ics into physics: quantum entanglement and quantum non-
locality. The relationship between them has then been a
source of great theoretical interest. These fundamental is-
sues play an essential role in the modern understanding of
quantum phenomena. However, further studies of quantum
nonlocality and entanglement, especially those providing
quantitative tests of quantum mechanics versus local real-
ism in the form of Bell’s inequalities [2–4], used mainly
Bohm’s version [5] of the EPR entangled states instead of
the original EPR states with continuous degrees of free-
dom. In recent years, the later has attracted much atten-
tion. The preparation of the EPR-type states for photons
was investigated both theoretically [6,7] and experimen-
tally [8,9]. However, as noticed in Refs. [8,9], the gen-
eralization of Bell’s inequalities to quantum systems with
continuous variables (CVs) is a challenging issue.

In the burgeoning field of quantum information theory
[10,11], EPR entanglement and quantum nonlocality are
also of practical importance. The fascinating nonlocal cor-
relations can be exploited to perform classically impossible
tasks. While most of the concepts in quantum information
theory were initially developed for quantum systems with
discrete quantum variables, quantum information protocols
(e.g., quantum teleportation [12], quantum error correction
[13], quantum computation [14], entanglement purification
[15], and cloning [16]) of CVs have also been proposed
very recently.

Quantum nonlocality for position-momentum variables
associated with the original EPR states was analyzed re-
cently [4,17,18]. Using the Wigner function approach [19],
Bell [4,17] has argued that the original EPR states will not
exhibit nonlocality, because its Wigner function is posi-
tive everywhere, and as such will allow a hidden vari-
able description of the system. By sharp contrast, it was
demonstrated in recent publications [18] that the Wigner
function of the two-mode squeezed vacuum states (the
“regularized” EPR states), though positive definite, pro-
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vides a direct evidence of the nonlocal character of the
states. The demonstration is based on the fact that the
Wigner function can be interpreted as a correlation func-
tion for the joint measurement of the parity operator. By
making use of the parity of coherent states as one of the ob-
servables, Yurke and Stoler have also presented a proposal
for observing the local realism violation with squeezed
states [20]. Using homodyning with weak coherent fields
and photon counting, a recent experiment [21] reported the
observed violation of the Bell-type inequalities by the regu-
larized EPR states produced in a pulsed nondegenerate
optical parametric amplifier (NOPA), confirming the theo-
retical prediction in Refs. [18,22].

There is a crucial point implied in Ref. [18]: A state
does not have to violate all possible Bell’s inequalities
to be considered quantum nonlocal; a given state is non-
local when it violates any Bell’s inequality. This point has
been also stressed in Ref. [23]. Thus the degree of quan-
tum nonlocality that we can uncover crucially depends
not only on the given quantum state but also on the “Bell
operator” [24]. In their demonstration of quantum non-
locality of the NOPA states by means of the phase-space
formalism, Banaszek and Wódkiewicz (BW) used the
Bell operator based on the joint parity measurements
[18]. However, it still remains to be answered whether or
not the original EPR states can maximally violate Bell’s
inequalities within the BW formalism. Moreover, the
violation of Bell’s inequalities uncovered by BW depends
upon the magnitude of the displacement in phase space,
an unsatisfactory feature. Thus the challenging problem
of generalizing Bell’s inequalities to quantum systems
with CVs is only partially solved in Ref. [18].

In this paper, we generalize Bell’s inequalities to the CV
cases for biparty systems. We then show that the original
EPR states, which are the limiting case of the NOPA states,
can maximally violate Bell’s inequality due to Clauser,
Horne, Shimony, and Holt [3], called the Bell-CHSH in-
equality in the following. In contrast to the BW formal-
ism (using the phase-space approach) and the proposal
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by Grangier et al. [22] (using the homodyne detection
scheme), here we show an interesting and direct analogy
between Bell’s inequalities for both discrete-variable and
CV cases; the correlation functions to be measured for ob-
serving the violation of the Bell-CHSH inequality are also
analogous for the two cases.

To this end, we need to introduce a Bell operator suitable
for the present purpose. First, let us recall some well-
known results of the Bell-CHSH inequality for two-qubit
systems (e.g., spin-1�2 systems). In the two-qubit case,
the Bell operator reads [24]

Bqubit � �a ? s1� ≠ �b ? s2� 1 �a ? s1� ≠ �b0 ? s2�
1 �a0 ? s1� ≠ �b ? s2� 2 �a0 ? s1� ≠ �b0 ? s2� ,

(1)

where sj is the Pauli matrix for the jth �j � 1, 2� qubit;
a, a0, b, and b0 are four unit three-dimensional vectors.
We can easily derive [24,25]

B2
qubit � 4I232 1 4��a 3 a0� ? s1� ≠ ��b 3 b0� ? s2� ,

(2)

where I232 is the identity operator for the qubit systems.
As a result, the expectation value of B

2
qubit with respect

to a two-qubit state satisfies �B2
qubit� # 4 1 4 � 8, im-

plying that j�Bqubit�j with respect to any two-qubit state is
bounded by 2

p
2, known as the Cirel’son bound [26].

Now for a single-mode light field, we can introduce the
following “pseudospin” operators for photons (perhaps the
pseudospin operators have been introduced in literature
somewhere we are unaware of):

sz �
X̀
n�0

�j2n 1 1� �2n 1 1j 2 j2n� �2nj� ,

s2 �
X̀
n�0

j2n� �2n 1 1j � �s1�y,

(3)

where jn� are the usual Fock states. The operator sz �
2�21�N (N is the number operator), where �21�N is the
parity operator; s1 and s2 are the “parity-flip” opera-
tors. In terms of the creation (ay) and annihilation opera-
tors (a), s2 can also be written as s2 � �I 1 �21�N � 3

�2
p

N 1 1 �21a, where I is the identity operator. It is in-
teresting to note that �1�

p
N 1 1 �a � eiq , with q known

as the Susskind-Glogower phase operator [27]. We can
easily check that

�sz, s6� � 62s6, �s1, s2� � sz . (4)

The commutation relations in Eq. (4) are identical to those
of the spin-1�2 systems. Therefore the pseudospin op-
erator ŝ � �sx , sy, sz�, where sx 6 isy � 2s6, can be re-
garded as a counterpart of the spin operator s. It is a kind
of spin operator acting upon the parity space of photons,
and thus can be called the “parity spin” of photons. The
quadrature amplitudes of a single-mode light field corre-
spond to the usual position and momentum operators, ac-
companied with the position-momentum uncertainty. The
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fact that one can define the parity spin as in (3) might imply
a new intrinsic uncertainty for photons (and other bosons).

Now choosing an arbitrary vector living on the surface
of a unit sphere a � �sinua coswa, sinua sinwa, cosua�
[ua�wa� being the polar (azimuthal) angle of a], we have

a ? ŝ � sz cosua 1 sinua�eiwa s2 1 e2iwa s1� . (5)

Analogously, a may be interpreted as the “direction” along
which we measure the parity spin ŝ. The commutation
relations in Eq. (4) lead to

�a ? ŝ�2 � I . (6)

Equation (6) means that the outcome of the measurement
of the Hermitian operator a ? ŝ (with eigenvalues 61) is
1 or 21. The above observations show that there exists
a perfect analogy between the CV systems and the usual
spin-1�2 systems. Thus all types of Bell’s inequalities
derived for the latter have their counterpart in the former.

In particular, for two-mode light fields, we define the
Bell operator as

BCHSH � �a ? ŝ1� ≠ �b ? ŝ2� 1 �a ? ŝ1� ≠ �b0 ? ŝ2�
1 �a0 ? ŝ1� ≠ �b ? ŝ2� 2 �a0 ? ŝ1� ≠ �b0 ? ŝ2� .

(7)

Here a, a0, b, and b0 are four unit vectors as before; ŝ1 and
ŝ2 are defined as in Eq. (3). Then local realistic theories
impose the following Bell-CHSH inequality [3]:

j�BCHSH�j # 2 , (8)

where �BCHSH� is the expectation value of BCHSH
with respect to a given quantum state of CVs. Equation
(8) represents the Bell-CHSH inequality of quantum
systems with CVs. Interestingly, our generalization of
Bell’s inequalities to CV systems is realized via joint
measurements on discrete (dichotomic) observable ŝ, in
a perfect analogy to the usual joint measurements on
spins. Within this scheme, the correlation function reads
E�a,b� � ��a ? ŝ1� ≠ �b ? ŝ2��.

By using �a ? ŝ1�2 � �b ? ŝ2�2 � �a0 ? ŝ1�2 �
�b0 ? ŝ2�2 � I [see Eq. (6)] and the commutation re-
lations in Eq. (4), it can been shown, similarly to the
two-qubit case, that

B 2
CHSH � 4I 2 �a ? ŝ1, a0 ? ŝ1� ≠ �b ? ŝ2, b0 ? ŝ2�

� 4I 1 4��a 3 a0� ? ŝ1� ≠ ��b 3 b0� ? ŝ2� .
(9)

Consequently,

�B2
CHSH� # 4 1 4 � 8 , (10)

which again implies that j�BCHSH�j with respect to
any quantum state of CVs is bounded by 2

p
2. When

j�BCHSH�j � 2
p

2 for a given state, we say that the
Bell-CHSH inequality (8) is maximally violated by the
state. In the following, we will use the Bell-CHSH
040406-2
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inequality (8) to uncover the nonlocality of the NOPA
states as well as of the original EPR states.

The NOPA process represents a nonlinear interaction
of two quantized modes (denoted by the corresponding
annihilation operators a1 and a2) in a nonlinear medium
with a strong classical pump field. In this process, the
NOPA can generate the two-mode squeezed vacuum states,
i.e., the NOPA states [6,7]:

jNOPA� � er�ay

1 a
y

2 2a1a2�j00� �
X̀
n�0

�tanhr�n

coshr
jnn� ,

(11)

where r . 0 is known as the squeezing parameter and
jnn� � jn�1 ≠ jn�2 �

1
n! �a

y
1 �n�ay

2 �nj00�. The NOPA
states jNOPA� are the optical analog of the EPR entangled
states in the limit of infinite squeezing. Thus the EPR’s
argument can be tested experimentally with the parametric
amplifier [8,9]. The squeezed-state entanglement of
jNOPA� is also essential in the teleportation of continuous
quantum variables [12].

Using Eqs. (3), (5), and (11) we derive

�BCHSH� � E�ua, ub� 1 E�ua, ub 0�
1 E�ua0 , ub� 2 E�ua0 , ub 0� , (12)

where the correlation function,

E�ua, ub� � �NOPAjs
�1�
ua

≠ s
�2�
ub
jNOPA�

� cosua cosub 1 K�r� sinua sinub , (13)

s
� j�
ua

� sjz cosua 1 sjx sinua , (14)

with K�r� � tanh�2r� # 1. In deriving Eq. (12), we have
set all azimuthal angles to be zero without affecting the
following discussion. Choosing ua � 0, ua0 � p�2, and
ub � 2ub 0 , we have

�BCHSH� � 2�cosub 1 K sinub� . (15)

For this specific setting, the maximum of �BCHSH� is

�BCHSH�max � 2
p

1 1 K2 , (16)

when ub � tan21K. Thus, the NOPA states always vio-
late the Bell-CHSH inequality (8) provided that r fi 0.
Meanwhile, the degree of quantum nonlocality uncovered
here is uniquely determined by the squeezing parame-
ter r; the parameter K may be reasonably regarded as a
quantitative measure of quantum nonlocality. Compared
with Ref. [18], here we do not rely on the phase-space
formalism.

The NOPA states jNOPA� can also be written as [18]

jNOPA� �
p

1 2 tanh2r

3
Z

dq
Z

dq0 g�q, q0; tanhr� jqq0� , (17)
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where g�q,q0 ; x� � 1�
p

p�1 2 x2� exp	2�q2 1 q02 2

2qq0x���2�1 2 x2��
 and jqq0� � jq�1 ≠ jq0�2, with jq�
being the usual eigenstates of the position operator. Since
limx!1g�q,q0; x� � d�q 2 q0�, one has limr!`

R
dq 3R

dq0 g�q,q0 ; tanhr� jqq0� �
R

dqjqq� � jEPR�, which
is exactly the original EPR states. Thus, in the infinite
squeezing limit, jNOPA�jr!` become the original, nor-
malized EPR states, for which we have

�BCHSH�max � 2
p

2 , (18)

by noting K�r ! `� � 1 and choosing ua � 0, ua0 �
p�2, and ub � 2ub 0 � p�4 in Eq. (12). This remarkable
result indicates that the normalized version of the original
EPR states can maximally violate the Bell-CHSH inequal-
ity (8).

Having shown theoretically the violation of the Bell-
CHSH inequality by the NOPA states, an important ques-
tion arises as to what physical measurements are necessary
to test experimentally quantum mechanics versus local re-
alism within the present scheme. For this purpose, it is suf-
ficient to consider how to measure s

� j�
ua

in Eq. (14) so that
the correlation function E�ua, ub� can be obtained. Thus,
in the following, we discuss possible schemes of measuring
su � sz cosu 1 sx sinu for an arbitrary single-mode state
of CVs. Quantum mechanically, su represents an observ-
able and thus can be measured in principle. But measuring
it in practice is nontrivial.

In Ref. [28], a scheme is presented to measure an ar-
bitrary motional observable of a trapped ion. It may be
used if one plans to test the present Bell-CHSH inequality
with two trapped ions in entangled motional states. Here
we consider the case where the entangled states of CVs
are prepared within two spatially separated high quality
cavities [23], each of which resonantly interacts with a
sequence of N two-level atoms. It suffices to consider
only one of the cavities characterized by the annihilation
operator a of the cavity field. The atom-cavity interaction
is the usual Jaynes-Cummings Hamiltonian. Assuming the
interaction time of each atom is tI , the unitary evolution
operator of the total atom-cavity system, in the interaction
picture, is [29]

UN �tI� � e2igtI �aysN1as
y

N � · · · e2igtI�ays11as
y

1 �, (19)

where si � jg�ii�ej (jg�i and je�i are the ground and ex-
cited states, respectively, of the ith atom), and g is the
atom-cavity coupling strength. Under the condition that
trapping states are absent, the property of “asymptotic
completeness” can be proved [29]:

lim
N!`

U
y
N �tI� �A ≠ IN�UN �tI � � I ≠ MA , (20)

which means that every observable A (e.g., su) of the cavity
field fully develops into the corresponding observable MA

of atoms in the asymptotic limit. Here, IN is the unit
operator in the Hilbert space of the N atoms. Reversing
040406-3
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the interaction time tI in (20), the asymptotic completeness
should be still valid, and reads

lim
N!`

WN �tI� �A ≠ IN�Wy
N �tI � � I ≠ MA , (21)

WN�tI� � U
y
N �2tI � , (22)

providing that A and MA are time independent. Using the
asymptotic completeness (21), the expectation value of A
with respect to a cavity field state jf� is

�fjAjf� � �Nj �fjA ≠ IN jf� jN�

� lim
N!`

�Nj �fjW
y
N �I ≠ MA�WN jf� jN� , (23)

with jN� being the initial state of atoms. Equation (23)
implies that, to measure �fjAjf�, one can send the N atoms
across the cavity in sequence; in the limit N ! `, �fjAjf�
is fully determined by measuring the observable of atoms
MA only.

However, it is impossible to handle practically an in-
finite number of atoms as above. Fortunately, with a fi-
nite number N of atoms, the above strategy can still yield
the desired result with high accuracy, in fact, approach-
ing 100% exponentially fast in N [29]. In this respect, it
is also important to choose jN� properly to obtain opti-
mal accuracy. Since states of atoms can be manipulated
and measured with current technology with good accuracy
[10], the strategy described here, though still experimen-
tally challenging, offers a feasible way to measure the cor-
relation function E�ua, ub� with acceptable accuracy. But
a more elegant method of measuring the correlation func-
tion E�ua, ub� is highly desirable.

In summary, we have defined a new Bell operator for
biparty systems with CVs. In this way Bell’s inequalities
have been generalized to CV systems. It is then demon-
strated that the NOPA states display quantum nonlocality
by using the Bell operator. In the limiting case of infinite
squeezing, the NOPA states reduce to the original normal-
ized EPR states which are shown to maximally violate the
Bell-CHSH inequality. A strategy to approximately test
the Bell-CHSH inequality has been proposed. The present
work reveals a perfect analogy between the CV systems
and the usual spin-1�2 systems. This fact opens up the
possibility that, in terms of the parity spin, the CV sys-
tems may be exploited to do quantum information tasks
(e.g., quantum teleportation [30]) as if they were usual
qubits. Since the parity spin operator acts as a collec-
tive operator, we expect that our method might be robust
against photon losses. Moreover, the present formulation
enables us to derive all types of Bell’s theorems for CV
systems. For instance, the extension of our result to the
Greenberger-Horne-Zeilinger theorem [31] for multiparty
quantum systems with CVs is also possible and straight-
forward [32].
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