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Dilute Bose-Einstein Condensate with Large Scattering Length
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We study a dilute Bose gas of atoms whose scattering length a is large compared to the range of their
interaction. We calculate the energy density E of a homogeneous Bose-Einstein condensate (BEC) to
second order in the low-density expansion, expressing it in terms of a and a second parameter L� that
determines the low-energy observables in the three-body sector. The second-order correction to E has
a small imaginary part that reflects the instability due to three-body recombination. In the case of a
trapped BEC with large negative a, we calculate the coefficient of the three-body mean-field term in E
in terms of a and L�. It can be very large if there is an Efimov state near threshold.
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Bose-Einstein condensates of atoms have been exten-
sively studied both experimentally and theoretically for
two cases: liquid helium [1] and dilute vapors of alkali
atoms [2]. The low-energy length scale � � �mC6�h̄2�1�4

set by the van der Waals interaction 2C6�r6 is the natu-
ral length scale for the S-wave scattering length a and
other parameters in the low-energy expansions of scat-
tering amplitudes. In the case of liquid helium, the in-
terparticle spacing n21�3 � 3.6 Å is much smaller than
� � 37 Å and a � 104 Å [3]. Because the diluteness
variable

p
n�3 � 33 is much greater than 1, the proper-

ties of the Bose-Einstein condensate (BEC) in liquid he-
lium depend on the detailed behavior of the interatomic
potential. In contrast, BEC’s consisting of dilute gases
of atoms with n�3 ø 1 have universal properties that de-
pend on the interatomic potential only through the single
low-energy parameter a. For example, the first few terms
in the low-density expansions for the energy density and
the condensate fraction of a homogeneous condensate can
be calculated as expansions in powers of

p
na3.

A fundamental open problem is the behavior of a di-
lute BEC �n�3 ø 1� with large scattering length �a ¿ ��
when na3 is comparable to or much greater than 1. The
diluteness condition n�3 ø 1 excludes the case of liq-
uid helium. The condition na3 * 1 implies that the low-
density expansion is not applicable, because the expansion
parameter

p
16pna3 is not small. The most basic question

is whether a BEC even exists as a well-defined quasistable
state in this limit. If so, does it have any universal proper-
ties that depend on the interatomic potential only through
the scattering length a? These questions can be investi-
gated experimentally in vapors of alkali atoms by tuning
a background magnetic field to a Feshbach resonance [4].
They can also be studied using numerical methods [5,6].

In this Letter, we take a small step towards addressing
this problem by studying the homogeneous BEC with large
scattering length �a ¿ �� in the extremely dilute limit
na3 ø 1. We calculate its energy density to second or-
der in

p
na3, determining the coefficient of na3 in terms

of a low-energy parameter L�. The parameter L� can be
determined from any low-energy three-body observable,
0031-9007�02�88(4)�040401(4)$20.00
e.g., the binding energy of the shallowest three-body bound
state. We also determine the coefficient of the three-body
term in the mean-field contribution to the energy density
for a , 0. Finally, we comment on the implications of our
results for the case of large na3.

The dilute Bose gas with large scattering length is
distinguished from the generic case by having a two-body
scattering amplitude f � 2a��1 1 iak� that has the
scale-invariant form f � i�k for wave numbers in the
range 1�a ø k ø 1�� [7]. If a . 0, it is also charac-
terized by the existence of a two-body bound state with
binding energy B2 � h̄2�ma2. As first pointed out by
Efimov [8], the three-body sector also exhibits universal
properties in the limit of large scattering length, such
as the existence of a large number of three-body bound
states. The number of these Efimov states is roughly
ln�jaj����p. The Efimov spectrum and other low-energy
three-body observables involving wave numbers k ø 1��
are universal in the sense that they depend on the inter-
atomic potential only through a and a single three-body
parameter. A convenient choice for this three-body
parameter is the low-energy parameter L� introduced in
Ref. [9].

In the dilute limit na3 ø 1, the properties of the Bose
gas can be calculated using the low-density expansion. The
first few terms in the low-density expansion of the energy
density of a homogeneous BEC are

E � 2p h̄2an2�m�1 1 128��15
p

p �
p

na3

1 8�4p 2 3
p

3 ��3

3 �ln�na3� 1 4.72 1 2B�na3 1 . . .� .

(1)

The
p

na3 correction was first calculated by Lee and Yang
in 1957 [10]. The coefficient of the logarithm in the na3

correction was calculated in 1959 [11]. The constant un-
der the logarithm was calculated by Braaten and Nieto in
1999 [12]. It was expressed in terms of an effective three-
body coupling constant g3�k� that can be determined by
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measuring the low-energy behavior of the three-atom elas-
tic scattering rate. This “running coupling constant” de-
pends on an arbitrary wave number k:

g3�k� � 384p�4p 2 3
p

3 � �ln�ka� 1 B�h̄2a4�m , (2)

where B is the same constant as in (1). The na3 correction
in (1) is the sum of a mean-field contribution g3�k�n3�36
coming from the effective three-body contact interaction
and a two-loop contribution from quantum fluctuations
around the mean field, which also depends on k. The de-
pendence on k cancels in (1), reflecting the arbitrariness
in the separation of the energy density into mean-field and
quantum-fluctuation contributions. The next nonuniversal
term in the low-density expansion is determined by the ef-
fective range for two-body scattering [13]. It is suppressed
by �na3�3�2��a, and is therefore completely negligible in
the limit of large scattering length.

To determine the constant B in the expression (1) for the
energy density for an extremely dilute Bose gas with large
scattering length, we need to calculate g3�k� as a function
of a and the low-energy three-body parameter L� intro-
duced in Ref. [9]. This can be accomplished by calculat-
ing the T-matrix element for three-atom elastic scattering
in the low-energy limit. As the total energy E of the three
atoms goes to 0, the T -matrix element is the sum of di-
vergent terms proportional to 1�E, 1�

p
E, and lnE [14]

and a remainder. The dependence of the T -matrix element
on L� enters only through the remainder, which includes
a term 2g3�k�. For the case a , 0, Efimov used simple
probability arguments to deduce the dependence of the re-
mainder on L� [8]. These arguments imply

B � b1 1 b2 tan�s0 ln�jajL�� 1 b� �a , 0� , (3)

where s0 � 1.0064. Efimov did not determine the func-
tional form of B for a . 0. However, unitarity requires
that it have an imaginary part that is related to the three-
body recombination rate into the shallow two-body bound
state [15,16]:

ImB � 0.022 cos2�s0 ln�aL�� 1 1.76� �a . 0� . (4)

The three-body recombination rate has zeroes at values
of aL� that differ by multiplicative factors of 22.7, and,
consequently, ImB also vanishes at those points.

A convenient way to calculate g3�k�, both for a . 0
and a , 0, is to use the effective field theory method de-
veloped by Bedaque, Hammer, and van Kolck in Ref. [9].
The effective theory is defined by the Lagrangian density

L � ic� ≠

≠t
c 1

1
2m

c�=2c 2
2pa
m

jcj4

1
2pa
m

jd 2 c2j2 2
g3

36
jdj2jcj2, (5)

where we have set h̄ � 1. The auxiliary field d, which an-
nihilates a pair of atoms at a point, can be eliminated using
the equation of motion d � c2�1 1 mg3��72pa� jcj2 1

. . .�. However, it is more convenient to keep it, because
three-body observables can be conveniently calculated in
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terms of four-point Green functions of c, d, cy, and
dy. For example, the T -matrix element for three-atom
elastic scattering can be expressed as a sum of nine con-
nected four-point Green functions. If the incoming atoms
have momenta k1, k2, and k3 with k1 1 k2 1 k3 � 0,
the external energies and momenta of c and d are set to
�k2

1�2m,k1� and ����k2
2 1 k2

3 ��2m, k2 1 k3���, respectively,
and similarly for the outgoing atoms. The Green function
is then summed over the three cyclic permutations of k1,
k2, and k3, and over the three cyclic permutations of the fi-
nal momenta to get the T -matrix element. The Green func-
tions can be calculated nonperturbatively by solving the
integral equations shown in Fig. 1a. The single lines are
propagators for c and the double lines are exact propaga-
tors for d. An ultraviolet cutoff L must be imposed on the
loop momentum in the integral equation. The three-body
coupling constant g3 in (5) is tuned as a function of L so
that the low-energy three-body observables depend only on
a and the low-energy parameter L�.

It is not necessary to calculate a physical observable
to determine g3�k�. For small external energies and mo-
menta �v, k� with mjvja2 ø 1 and jkj ø 1, a Green
function associated with the Lagrangian (5) can also be
calculated perturbatively in a and g3 using the methods of
Ref. [12]. By computing the same Green function using
the nonperturbative method of Ref. [9], we can determine
g3 as a function of a and L�. We choose the two particle-
irreducible connected Green function T�p� with external
energies and momenta �0, 0� for c and d, �p2�2m, p� for
cy, and �2p2�2m, 2p� for dy. As p ! 0, T�p� has di-
vergent terms proportional to 1�p2, 1�p, and ln�p� that
come from the diagrams in brackets in Fig. 1b. The cou-
pling constant g3�k� in Ref. [12] was defined using dimen-
sional regularization in 3 2 2e dimensions to regularize
the ultraviolet divergences and minimal subtraction with
renormalization scale k to remove the poles in e. Calculat-
ing the diagrams that contribute to T �p� in the limit p ! 0
using perturbation theory to first order g3 and fourth order
in a, we obtain

T�p� °! 2g3�k��36 1 16p2a4�m

3 �1��p2a2� 2 2p��3pa�

2 2�4p 2 3
p

3 ���3p�

3 �ln�p�k� 1 AMS�� , (6)

T

T

(a)

p

p

(b)

T

T
p 0

0

0

T

FIG. 1. (a) Integral equation satisfied by the off-shell ampli-
tude T �p�. (b) Definition of the subtracted amplitude T �p�.
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where AMS � 20.772 68 and the subscript MS stands for
“minimal subtraction.” The nonperturbative calculation of
the Green function T �p� using the method of Ref. [9] re-
quires solving the integral equation in Fig. 1a. It is con-
venient to define a subtracted Green function T �p� that
has a finite limit as p ! 0 using the subtraction shown
in Fig. 1b. We solve the integral equation for T �p� as a
function of p, a, and L� and then set p � 0. The resulting
expression for T �p� in the limit p ! 0 is

T�p� °! 16p2a4�m

3 �1��p2a2� 2 2p��3pa�

2 2�4p 2 3
p

3 ���3p�

3 �ln�pa� 1 A�aL���� , (7)

where A�aL�� is a function of aL� that is determined
numerically. Matching the expressions (6) and (7), we
find that the constant B in (2) is given by B � 2AMS 1
A�aL��.

We first consider the case of large positive scattering
length. For a . 0, our result for B is complex. Its imagi-
nary part is equal to (4), as required by unitarity. For the
real part, we obtain a good fit with the empirical formula

ReB � 1.22 1 0.021 cos2�s0 ln�aL�� 1 1.0�

�a . 0� . (8)

The real part is much larger than the imaginary part given
in (4). The oscillatory term in the real part has almost
the same amplitude as the imaginary part, but a different
phase.

In the coefficient of na3 in the expression (1) for the
energy density, the real part of the factor in brackets can be
separated into two terms: 2 ln�ka� 1 2 ReB, which comes
from the mean-field contribution to the energy density,
and ln�na�k2� 1 4.72, which comes from quantum field
fluctuations. Although k is arbitrary, we can by a suitable
choice of k arrange for most of the na3 correction to
come from the mean-field contribution. The smallest value
of k that is physically reasonable is of order

p
16pna,

which is the inverse of the coherence length. Below this
scale, the dispersion relation for the atoms is modified by
collective effects, and three-atom scattering is therefore no
longer described accurately by the vacuum T-matrix. If
we choose k � 1.5

p
16pna, the entire na3 correction in

(1) is taken into account by the mean-field contribution
g3�k�n3�36.

The na3 correction to the energy density has an imagi-
nary part that comes from the imaginary part of B given
in (4). This imaginary part reflects the fact that the BEC
is only a quasistable state. Atoms will be continually lost
from the condensate by three-body recombination into the
shallow two-body bound state and a recoiling atom. In
the mean-field approximation, the rate of decrease of the
number density is �≠�≠t�n � 2�Img3�6h̄�n3. Note that
Img3 is independent of k. The energy loss rate is given
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by ≠E �≠t � �≠E�≠n�≠n�≠t. The condensate is particu-
larly stable at values of a that correspond to ln�aL�� �
2.93 modp�s0. At these discrete values of a that differ by
multiplicative factors of 22.7, there is an interference effect
that causes the three-body recombination rate to vanish
[15,16]. The recombination process that gives the energy
density an imaginary part produces atoms and bound states
with wave number k � 2�

p
3a. These high energy atoms

and bound states can subsequently thermalize and cool by
elastic scattering with atoms in the condensate. The cross
section for elastic scattering of the atoms and bound states
can be calculated as a function of a and L�. For example,
the scattering length was calculated in Ref. [9] and the
effective range in Ref. [17].

We now turn to the case of large negative scattering
length. If a , 0, the expression (1) for the energy den-
sity does not apply, because the homogeneous condensate
is unstable to collapse. However, a condensate with a , 0
can be stabilized by a trapping potential as long as the
number of atoms is below some critical value Nmax [18].
An effective three-body contact interaction 2g3 gives a
mean-field contribution g3n3�36 to the energy density. The
effect of such a term on the stability of a trapped conden-
sate has been studied by adding a three-body term to the
Gross-Pitaevski equation [19]. Even a small positive value
of g3 can considerably increase the critical number Nmax .

In the case of large negative scattering length, the three-
body coupling constant g3�k� is given by (2). The de-
pendence of our result for B on aL� has the functional
form (3) predicted by Efimov. The values of the constants
are b1 � 1.23, b2 � 23.16, and b � 0.19. The appro-
priate choice for k in this case is the lowest wave num-
ber above which three-body scattering can be described
by the T-matrix for scattering in the vacuum. The vac-
uum T-matrix becomes inaccurate not only because of
the nontrivial quasiparticle dispersion relation but also be-
cause of the inhomogeneities of the trapping potential
V �r�. The minimum value of k set by the coherence
length is k2 . 4m�m 2 V�r��, where m is the chemical
potential. For a harmonic potential with frequency v,
the minimum set by the inhomogeneity of the potential
is k2 . mv�h̄. In previous studies of the mean-field ef-
fects of the three-body term [19], the coefficient g3 was
assumed to be a constant. If the large scattering length is
obtained by tuning the magnetic field to a Feshbach reso-
nance, g3 is given by the expression (2), which scales
roughly similar to a4. Note that the constant B given in (3)
diverges at values of a that correspond to ln�aL�� � 1.37
modp�s0. At these discrete values of a, there is an Efi-
mov state at the three-atom threshold. Near these values
of a, the three-body term in the Gross-Pitaevski equation
becomes particularly important. However, if the Efimov
state is too close to threshold, the mean-field approxima-
tion breaks down because the energy dependence of the
three-body elastic scattering amplitude from terms propor-
tional to 1��E 1 B3� is not properly taken into account.
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We turn finally to the problem of a homogeneous BEC
with a large scattering length �a ¿ �� that is dilute enough
so that n�3 ø 1 but dense enough so that na3 ¿ 1. Our
results for the extremely dilute limit provide a reference
point for discussing this problem. The fact that our energy
density has an imaginary part serves to emphasize that such
a state will at best be quasistable. Monte Carlo methods
that search for the absolute ground state [5] will therefore
be of limited utility. In the extremely dilute limit, the
condensate is quasistable because the imaginary part of
the energy density is suppressed by na3. Is there any
mechanism that can provide quasistability at large na3?
If a quasistable Bose-Einstein condensate does exist, there
are some other obvious questions. At what rate does the
number density in the condensate decay, and what is the
fate of the atoms that disappear from the condensate? We
have answered these questions for the extremely dilute
limit.

Assuming that a quasistable BEC exists in the limit
na3 ! `, does it have universal properties that depend
only on a? If so, dimensional analysis implies that the en-
ergy density must have the form E � Ch̄2n5�3�m, where
C is a constant. In the extremely dilute limit, we found
that E depends on L� at second order in

p
na3. Does

E depend on L� in the limit na3 ! `? If so, the coeffi-
cient C in the energy density is not a constant, but depends
on n in a peculiar way. It must be a periodic function of
ln�n21�3L�� that returns to the same value when n is in-
creased by a factor of about 11 700. This follows from
the discrete scaling symmetry of low-energy three-body
observables discovered by Efimov [8,17], which implies
that C�n21�3L�� � C�22.7n21�3L��. This discrete scal-
ing symmetry is related to the fact that there are Efimov
states with sizes differing by factors of 22.7 and ranging all
the way from order � to order a. The question of whether
C depends on L� is not addressed by the constrained varia-
tional calculations of Ref. [6]. Their variational ansatz
excludes states with three-body configurations that are sen-
sitive to L�. For example, in the three-body sector, it
would exclude the Efimov states.

If the coefficient C in the energy density depends on the
three-body parameter L�, one might worry that it may also
depend on infinitely many other low-energy parameters as-
sociated with four-body and higher n-body observables. If
this is the case, the dilute BEC with large scattering length
would have no universal properties at large na3. The most
favorable possibility is that, in the limit of large scattering
length, the low-energy observables in the four-body and
higher n-body sectors are all calculable to leading order in
��a in terms of a and L� only. If this is the case, then
a dilute BEC with large na3 may have properties that are
040401-4
universal in the sense that they are determined by a and
L� only.
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Note added.—After this work was submitted for publi-
cation, we became aware of a related study by Bulgac [20].
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