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A simple approach for the efficient exploration of the potential energy surface of a many-body sys-
tem is presented. The method uses Langevin dynamics trajectories that are successively confined in the
various basins of the potential energy surface. The approach is illustrated by determining the poten-
tial energy surface, and the thermodynamic and kinetic properties of a solvated model for the alanine
tetrapeptide, the shortest peptide that can form an a-helical turn. All possible cis isomers are sampled,
even though the barriers separating them are as high as 25 kcal/mole. Comparisons with conventional
Langevin dynamics confirm the greater efficacy of the approach.
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The potential energy surfaces of mesoscopic systems
(systems with many degrees of freedom that are in the 10
to 1000 A range) are fundamental to an understanding of
their structural, thermodynamic, and dynamic properties.
Of particular interest are mesoscopic systems of impor-
tance in biology, such as proteins, nucleic acids, and lipid
membranes. The complexity of the behavior of such sys-
tems has been demonstrated for proteins in the native state,
as exemplified by myoglobin [1,2] and bacteriorhodopsin
[3], and for folding to the native state [4].

An approach for describing such complex potential en-
ergy surfaces (PES) based on topological mapping via dis-
connectivity graphs has been introduced recently [5]. The
disconnectivity graph shows which minima are connected
by pathways lying below a certain energy threshold. They
have been applied to classify “archetypical energy land-
scapes” for Lennard-Jones clusters, buckministerfullarene,
and a model water cluster [6]. The essential element in
the construction of the disconnectivity graph is a knowl-
edge of the local minima and the saddles connecting them.
Since determination of a meaningful portion of the PES
becomes more difficult as the size of the system increases,
it is essential to develop sampling methods that go beyond
the widely used Monte Carlo (MC) [7] or molecular dy-
namics (MD) approaches [8].

Most of the complex systems of interest have a PES that
consists of multiple low energy regions (basins) separated
by barriers that are large with respect to k7T'; a schematic
PES of this type in one dimension is shown in Fig. 1.
The behavior of a system with such a PES is often non-
ergodic at normal temperatures on the time scales accessi-
ble to standard MD or MC methods on current computers;
i.e., the sampled distribution depends on the starting struc-
ture. Thus, for effective sampling, it can be useful to
bias the search algorithm so that it violates the equilibrium
Boltzmann distribution corresponding to the PES. A num-
ber of methods have been proposed for this purpose [9].
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Most of the methods in [9] are useful for obtaining equi-
librium properties. They are of limited value for a detailed
survey of the PES because they miss important low en-
thalpy, low entropy minima. In this Letter, we present an
alternative approach and illustrate it by a full exploration
of the PES of a solvated tetrapeptide (Fig. 2), the shortest
peptide that can form an a-helical turn. It has a nontrivial
PES, but still is in the reach of ordinary MD, so that we
can determine the speedup of the new method. The peptide
is represented by an empirical force field [10] with an im-
plicit solvent model that has been shown to be accurate for
peptides [11]. Since a very similar tetrapeptide has been
analyzed in vacuo [5,12], the comparison is of considerable
interest. The power of the method is demonstrated by the
fact that not only the manifold of states associated with
the lowest energy all-trans peptide bonded isomers are
well sampled, but that all the cis peptide isomers (mono
cis through tetra cis), which are separated by high barri-
ers from the all-trans form, are found without explicitly
searching them. We demonstrate that the equilibrium ther-
modynamics of the basins and the kinetics of the transitions
between them are determined efficiently, as well.

The present approach makes use of Langevin dynam-
ics (LD) to generate the trajectory of the system (though
Newtonian MD [13] or MC could be used instead) and is
based on a very simple concept that gives it a wide range of

FIG. 1. A model one-dimensional potential surface (see text).
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FIG. 2. Coarse graining disconnectivity graph of the entire
PES of the tetrapeptide; energy spacing is in kcal/mol. The
different cis isomers are numbered according to a reverse binary
rule (i.e., the count is made from left to right) with 0 and 1
standing for the trans and cis isomer of the peptide group, re-
spectively. For example, 7 = (1110) is the cis-cis-cis-trans con-
formation. @ and B label the a-helix and B-strand (extended)
conformers, respectively. The right panel shows the magnified
view of the low energy all-frans part of the PES.

applicability. The essential idea is that the system is con-
fined successively to different basins on the PES, with the
choice of basins for detailed examination, after they have
been visited at least once, and the length of time spent in
the basins being determined by the problem under inves-
tigation (in other approaches [9] the system still follows
inherent dynamics on a deformed PES). It offers essen-
tially unlimited flexibility in the distribution of the resi-
dence times of the system in different regions of the PES
and provides a general framework for constructing optimal
simulation schemes.

To indicate why exploration of the PES by successive
confinement is likely to be significantly more efficient than
conventional MD or MC, we consider the one-dimensional
model surface depicted in Fig. 1. It consists of two clusters
of basins (“superbasins”), and it is assumed for simplicity
that all the basins are identical except for their minimum
energies. In particular, they have the same mean lifetime
7, and the same probability, p, for the system to go to
the neighboring higher energy basin in a given time (the
probability to go in the reverse direction is 1 — p) with
p < 1; it is for this case that the confinement method is
expected to be most useful. The system is placed at the
bottom of one of the superbasins. If conventional MD at
a given T is used, the system freely goes up and down
among the basins and the mean time for the system to
reach the nth basin from the bottom of the first super-
basin is feony = 7/p". For the Fig. 1 surface, if the su-
perbasin barrier is much greater than k7, the system is
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likely to remain in the original superbasin with conven-
tional dynamics. In the successive confinement method,
the system is not allowed to return to a lower energy basin
because it has been sampled already. The mean time for
the system to go to the next higher energy basin is 7/p
[i.e., it is the same as for 7..,y; the mean time to go to the
neighboring lower energy basin is 7/(1 — p) ~ 7] and
the time to reach the nth basin is equal to feonr = n7/p.
The gain in efficiency, if the same path is followed in
the conventional and confinement simulations, is equal to
the ratio feony/feont = p' "/n. For n = 4 as in Fig. 1,
and p = 0.1, for example, we find feony/fcont = 250. In
the tetrapeptide simulation, a comparison of the two ap-
proaches can be made for the transition from the extended
(B) strand to the a-helix (see below). In the conventional
simulation, the fastest pathway involves three transitions,
while it requires five in the confinement simulation; in both
cases p is about 0.07. Using the expressions for #¢ony and
feonf, We Obtain feony/teont = p~2/5 = 41.

With Langevin dynamics, the procedure is as follows.
The system is placed in a certain (ith) basin and a MD run
is begun at a temperature T'; both the physical temperature
or a higher temperature can be used. At regular intervals
the system is quenched (to 0 K) to check if the trajectory
is still in the given basin or has left it; for this, the conver-
gence of the quenched structures to or divergence from that
corresponding to the minimum of the basin is examined
[2,14]. At the current quench, atomic coordinates at the
phase point (x,), where « indicates the basin, are stored;
if the system is in the original (ith) basin, « = i, the MD
run is continued. If the system has left the ith basin, the
system is placed back into the ith basin (at the point x;
associated with the previous quenching), and a new tra-
jectory is initiated with velocities chosen at random from
a Maxwellian distribution at the temperature of the simu-
lation. In this way, the system can be kept in the given
basin for any desired time. Since all visited basins are
recorded, we can calculate not only the equilibrium prop-
erties corresponding to the given (ith) basin, but also de-
termine the probabilities to pass into the connected basins.
Once the properties of interest associated with basin i have
converged, the system is allowed to pass into neighboring
basins of interest and the described procedure is repeated.

The choice of the next basins to be visited depends on
the goal of the study. For systems that are small enough so
that a sampling of all (or a very large part) of the basins on
the PES is possible, one can allow the system to pass into
each new basin that has not been previously sampled and
study it in turn. However, if the system is large, the goal
may be to survey just a part of the PES (e.g., the low energy
region that is important at ordinary temperatures), or to
obtain a “coarse” survey of the entire PES. In the first case,
preference is given to the basins which are in the portion
of the PES of interest; in the second case, the basins to be
investigated are chosen by the criterion that their minima
differ in structure most from those of the initial basin and
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other basins that have been sampled already. Alternatively,
one may be interested in the dynamics of the system, so
that preference is given to basins with low energy transition
states. In the present study we mainly employ the first
strategy that allows the system to pass into every new basin
that has not been sampled previously since we are making
an essentially complete survey of the all-trans PES. For
finding the low energy regions pertaining to the various
cis isomers, we choose instead to go to basins of minimal
energy because the cis isomers have relatively low energies
but are separated by high barriers.

The LD simulations were performed with the CHARMM
program [10], using the polar hydrogen parameter set for
peptides and proteins (param19) [15] and the ACS im-
plicit solvation model [11]. The friction coefficient in
the Langevin equations was set equal to 64 ps~! [16] and
a time step of 1 fs was used. For quenching, a com-
bination of steepest descent (50 steps) and the adopted-
basis set Newton-Raphson minimization methods (usually
300 steps) were employed [10]. Saddles were found with
the TRAVEL algorithm [17].

The first survey of the PES was performed at 500 K
with a LD simulation of 50 ns. A total of 408 minima and
4800 transition states were found by successive confine-
ment with barriers up to 23 kcal/mol, relative to the global
minimum. By contrast, only 97 minima and 670 transition
states with barriers up to 8 kcal/mol were obtained with
a conventional LD simulation of the same length; for
minima with energies below—121 kcal/mol, the conven-
tional LD sampling was relatively complete, but very few
minima (21 versus 344 by successive confinement) were
found above that value. No cis isomers were found during
conventional LD, while several cis isomers (1,2,4,6; see
Fig. 2 for the definition) were found by the confinement
method. To obtain more efficient sampling of all the cis
isomers, another LD trajectory of 6.4 ns was calculated at
a temperature of 800 K.

Figure 2 presents a coarse grained disconnectivity
graph for the entire PES, including all 16 isomers. Since
the barriers that are crossed go up to 25 kcal/mol relative
to the global minimum (27 kT for 7 = 500 K), it is
of interest to illustrate how the confinement simulation
progresses in finding the cis isomers. In going from the
all-trans minimum energy basin (0) to mono cis (2), the
ladder followed at 500 K is —126.1100, (—121.4047),
—121.6296, (—113.3441), —122.4638, where the num-
bers are the energies of the minima and the numbers
in parentheses are those of the barriers between them
(all in kcal/mol); from all-trans (0) to mono-cis (4),
the ladder is: —125.0197, (—118.9889), —121.7067,
(—120.0868), —123.2215, (—110.9361), —123.6807.
From all-trans to all-cis at 800 K, the ladder is 0 to
4: —124.4033, (—109.9052), —123.4851; from 4 to 6:
—118.8571, (—106.3595) —121.2710; from 6 to 14:
—113.5091, (—97.3553), —111.8034; and from 14 to
15: —120.6720, (—102.2448), —115.8970. Although the
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barriers crossed in the ladders shown for illustration go as
high as 18.5 kcal/mol, a detailed analysis of the surface
shows that no barriers higher than 11 to 12 kcal/mol have
to be crossed to cover the entire PES, including the cis
isomers.

As can be seen from Fig. 2, the all-frans isomer (0)
contains the conformers of lowest energy, including the
a-helical turn («), which is the absolute minimum, and
an extended B-like strand (), which is the second lowest
conformer. The right panel shows all of the all-trans
conformers that are connected by barriers lower than
—120 kcal/mol. It is clear that there are many low
energy minima and the surface is complex but not funnel-
like. Comparison with Fig. 8a of Ref. [5] shows that the
all-trrans vacuum surface and the surface with implicit
solvent are significantly different. In vacuum, both the «-
helical and extended -strands are higher energy minima;
the lowest energy vacuum structures have two hydrogen
bonds, in contrast to only one for the a-helical structure,
since hydrogen bonds play a more important role in
vacuum. Most significantly the shape of the low energy
region is quite different. The vacuum principal component
surface [18] is a rather flat well until an energy of about
5 kcal/mol above the minimum is reached, and then the
surface separates into a number of deep (funnel-like) su-
perbasins. By contrast, the solvated surface is very rugged
to a higher energy than in the vacuum case and has no
overall tendency to decrease in energy toward the global
minimum. It resembles the low temperature effective en-
ergy surface found in the cubic lattice Monte Carlo folding
simulations for a 27-bead heteropolymer protein model
(see Fig. 3 of [19]), much more than a simple folding
funnel. This could be significant for protein folding.

Once the PES has been explored, the confinement simu-
lations can be used to determine the equilibrium properties
of the basins of interest and the kinetics of transitions from
one basin or superbasin to another. While the system is
confined to a current basin (i), one can calculate the prob-
ability Q;;(7) that the system will be found in the jth basin
(including the original basin i) at the subsequent quenching
after a time interval 7. Successively confining the system
to the basins of the PES, one obtains the transition proba-
bility matrix Q{Q;;(7)} that is related to the reaction rate
matrix W{W;;} as Q(7) = exp(Wr). The kinetics can be
described directly in the terms of the transition probabil-
ities, if we treat the transitions between the minima as a
Markovian process in the discrete time domain of quench-
ing intervals 7. The time evolution of the vector of states
P(t) = {P;(2)} (the probability for the system to be found
in basin j at time ) after n successive 7 steps obeys the
equation P(r = n71) = Q"(7)P(¢t = 0).

Confinement simulations to determine the kinetics were
done for 3.6 ns at 300 K. Sixty-nine basins and 289 tran-
sition states connecting them were found; only basins with
an energy less than —123 kcal/mol were included. The
results are in accord with those obtained from the 500 K
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TABLE I. Equilibrium residence probabilities. Upip is the
minimum energy of the conformer (kcal/mol). ngy,y is the
absolute number of transitions into the given basin from any
other basin observed in the conventional simulations. The su-
perscripts “conf” and "conv" refer to confinement and conven-
tional simulations.

Umin Nconv Pg;’“f Pé:(({)nv
—127.5923 [«] 20 0.008 90 0.006 54
—125.0197 77 0.001 43 0.001 58
—126.8182 [B] 6702 0.54508 0.540 80
—125.8585 3098 0.041 65 0.040 52
—125.8013 3432 0.05840 0.05509
—124.8512 5260 0.005 67 0.006 05
—126.0183 8320 0.096 73 0.08513
—125.9658 633 0.07392 0.08243

simulations for this energy range. In each of the basins,
the system made 150 attempts to pass into other basins;
a quenching interval of 1 ps was used. A conventional
LD (LD¢ony) run of 10 ns found approximately the same
number of minima and transition states (53 and 217, re-
spectively), because LD,y adequately covers this low en-
ergy part of the PES (see above). The discrepancy between
the corresponding elements of the transition matrices Qcony
and Qconr are within the statistical error range. The main
differences between the two matrices is that Qcy,y gives
very good estimates for the transition probabilities for the
small number of low-lying conformers, whereas the Qcont
matrix gives reasonable estimates for all the investigated
conformers.

The equilibrium residence probabilities P.q can be
calculated directly from the conventional simulation by
counting the number of times the system was found in a
particular basin and, indirectly, from the confinement
simulation if the transition matrix Q is irreducible (i.e.,
there exists a path between all pairs of the states, direct
or indirect), from the equation Peq = QP,. The values
of Peq calculated in these ways for some of the low-lying
conformers are listed in Table 1. It is seen that as the num-
ber of events in the conventional simulation increases, the
agreement between the residence probabilities calculated
from the two methods improves. Since the sampling of
the surface by the confinement approach was essentially
uniform, it follows that any pronounced discrepancy
in the residence probabilities (e.g., for the —127.5923
level for which there are only a few events) arises from
statistical errors in the direct simulation. A striking result
in Table I is that the lowest energy structure (the a-helix
with energy —127.5923 kcal/mol) has a much smaller
residence probability than the B-strand basin. This is due
primarily to the difference in configurational entropy; at
300 K the average energy difference is —0.8 kcal/mol
and the entropic contribution is —2.45 kcal/mol.
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This report has demonstrated the power of the confine-
ment method for a simple biologically interesting mole-
cule, the solvated tetrapeptide. Applications to larger
systems are in progress.
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