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We present an ab initio calculation of the electron energy loss spectrum of rutile TiO2 in the energy
range of 0 to 60 eV, focusing our interest on the excitation from the titanium 3p semicore levels. The
results are compared to our measurements. Local field effects turn out to be crucial at those energies, and
their inclusion in the calculation yields excellent agreement between theory and experiment. We show
how in rutile these effects induce an anisotropy in the otherwise isotropic transitions from quasispherical
3p semicore states to 3d states of almost cubic symmetry.
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Electron energy loss spectroscopy (EELS) is increas-
ingly used for the investigation of materials. Spectra can
be obtained at variable momentum transfer and complex
problems like bonding in metals and alloys [1] or local en-
vironments at interfaces [2] can be investigated.

Excitations from core levels are generally compared ei-
ther to the results of atomistic scattering approaches based
on the evaluation of the scattering probabilities and phase
shifts of the incident electron in the potential of the tar-
get [3], or to the density of unoccupied states obtained in
an ab initio supercell calculation, simulating the core hole
as a positive charge—the Z 1 1 approximation [4]—or
treating it self-consistently [5].

In the energy range of valence transitions, the disper-
sion of the initial states cannot be neglected, and transition
matrix elements must be explicitly calculated. To this end,
one usually uses the random phase approximation (RPA),
where the microscopic dielectric function ´ is constructed
from the band structure according to

´G,G0�q, v� � dG,G0 2 y�q 1 G�x0
G,G0�q, v� . (1)

G is a reciprocal lattice vector, q is a vector in the first
Brillouin zone, y is the bare Coulomb interaction, and
the independent-particle response function x0 is a sum
over transitions between occupied and empty states [6].
The transition energies and matrix elements are often
obtained from the eigenvalues and eigenfunctions of
the Kohn-Sham equation of density functional theory
(DFT) [7]. Then, one constructs the energy loss function
2Im�´21

G,G0�q, v��G�G0�0. Since the crystal is inhomo-
geneous, it is important to consider the so-called crystal
local-field effects (LFE). One possible way is to take into
account the off-diagonal elements of the dielectric matrix
´G,G0�q, v� in the matrix inversion. These effects have
a strong influence on the valence plasmon position and
line shape [8], and they are even more important at higher
energies, where more localized states are contributing.
For instance, LFE have been shown to be large for the
deep-level x-ray absorption spectra of transition metals
1 0031-9007�02�88(3)�037601(4)$20.00
[9]. So far, we are not aware of studies concentrating on
the intermediate energy range of semicore levels.

Those energies are, however, interesting, e.g., in various
compounds of 3d transition metals, where the 3p states are
almost atomiclike, but still feel the interaction with neigh-
boring atoms and do in general slightly hybridize. A good
case to study is TiO2, a relatively simple transition metal
oxide with titanium 3p semicore levels at intermediate en-
ergy, about 33 eV below the upper valence band. It also
meets a broad technological interest, due to its application
in photocatalysis [10] and in paint.

The aim of this work is to study LFE in the EELS spec-
tra of rutile TiO2, in an energy range of up to 60 eV, which
covers the transitions from valence and semicore states.
We show that this can be done by performing ab initio
plane wave calculations, using the fact that charge fluctu-
ations of high spatial frequency can be neglected. LFE in
the semicore region are found to be strong. It is particu-
larly interesting to see how the anisotropy of the rutile
crystal shows up even in transitions from the almost
spherical semicore levels: in fact, LFE introduce the
“surroundings” in an otherwise local measurement. We
confirm our calculations by performing EELS measure-
ments on a rutile single crystal, and obtain excellent
agreement when LFE and the geometry of the experiment
are included in the comparison.

Our calculations start with a DFT ground state calcu-
lation within the local density approximation (LDA). We
use norm-conserving pseudopotentials [11], a plane wave
basis and, due to the inclusion of the 3s and 3p semi-
core states, an energy cutoff of 140 Ry. We determine the
equilibrium lattice parameters for the rutile crystal to be
a � 4.52 and c � 2.91 Å, in excellent agreement with the
experimental results aexp � 4.59 and cexp � 2.96 Å [12].
Next, we construct x0 and ´ [Eq. (1)]. To compute the
EELS spectrum without LFE, we need one sole diagonal
element, ´Ḡ,Ḡ�q, v�, if we are interested in a momentum
transfer q 1 Ḡ. Here Ḡ � 0.

The bottom panel of Fig. 1 shows our calculated
loss function for vanishing q neglecting LFE. For the
© 2002 The American Physical Society 037601-1
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FIG. 1. Theoretical spectra without LFE at q � 0. Upper
(central) panel: real (imaginary) part of the dielectric function,
with a Lorentzian broadening (LB) of 0.1 eV. Lower panel: cor-
responding loss function, with a LB of 0.6 eV.

continuous (dashed) line, q has been taken perpendicular
(parallel) to the c axis, yielding a dielectric function
called ´��´jj� below. The upper panel of Fig. 1 shows the
real part of ´�, ´1, and the central panel its imaginary
part, ´2. We identify three principal structures in the loss
function, ´2��´2

1 1 ´
2
2�: first, a structured plasmon peak

at about 13 eV, caused by the double zero of ´1; second, a
broad collective excitation at about 25 eV stemming from
a small linearly increasing real part and a linearly decreas-
ing imaginary part. This low energy part is in qualitative
agreement with the calculations of Ref. [13]. Third,
transitions from the Ti 3p levels to the lowest conduction
bands—coming from 3d atomic states — form two peaks
at 35 and 39 eV in ´2 [14]. These empty states have
quasicubic t2g and eg character, indicating the smallness
of the tetragonal perturbation induced by the D4h crystal
field. They cause the double zero in ´1, hence the double
peak at about 37.7 and 44.4 eV in the loss function. The
double peak shows substructures in both polarizations,
which is characteristic of 3p to 3d transitions and has
been observed and explained by multiplets approaches,
e.g., in the EELS of TiN, or in the M2,3 absorption spectra
of TiF3 [15]. Although the present calculation reveals
a dispersion of 0.7 eV for the Ti 3p bands, this energy
level is in a certain sense atomiclike: whereas the height
of the valence plasmon peak increases by almost 50%
when going from q�c to qjjc, together with a change
in line shape, the height of the semicore peaks at 37.7
and 44.4 eV increases by only 12%, and little change in
line shape is found. This is a consequence of the almost
037601-2
spherical symmetry of the quasidegenerate p levels and
of the quasicubic symmetry of the narrow final states.

In order to include LFE, one possibility is to calculate
the whole dielectric matrix, and invert it for every fre-
quency v which, in view of the many plane waves (PW’s)
in the basis, would be in principle an impossible task.
However, it turns out that the size of the matrix to be in-
verted can be chosen much smaller than the number of
PW’s for the wave functions. Figure 2 shows the same
quantities as Fig. 1, but including LFE. The continuous
and dashed curves have been obtained at full convergence,
using only 327 PW’s in the matrix inversion—compared
to the 2000 PW’s which are needed for the calculation of
the matrix elements. Moreover, the dot-dashed curve in
the inset also shows the result for a calculation using only
137 PW’s, i.e., with jGj , 5 Å21. It can be seen (i) that
LFE, as we expected, drastically reduce the peak heights,
changing both positions and line shapes, and cannot be
neglected but (ii) that the main part of the effect can be
recovered using very small matrices, which suggests that
one should always include these effects. Now let us look
again at the asymmetry of the results. Including LFE, the
difference between ´jj and ´� is enhanced, and this is par-
ticularly evident on the formerly almost isotropic semicore
peak. In fact, the previously independent transitions mix,
and hence transitions to more anisotropic states contribute
to the semicore peak. This mixing could equivalently be
described by the concept of an electron-hole exchange in-
teraction [9,16], or when an atomic picture is adequate, by
the mixing of multiplets.

From our theoretical results, it is hence clear that LFE
play a key role for the quantitative determination of the
EELS spectra in the semicore region. In order to show
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FIG. 2. Same caption as Fig. 1, with LFE. Inset: results with
327 (dashed line) and 127 (dot-dashed line) G vectors.
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that they are actually sufficient, and that we can neglect
more complicated many-body effects such as self-energy
corrections and the electron-hole attraction [17,18], we
have performed experiments with a transmission electron
microscope (TEM). The scattering geometry in the TEM
allows the detection of the signal in the diffraction plane,
i.e., selecting a scattering vector in the reciprocal lattice of
the specimen: both a vanishing q and a q � 0.4 Å21 in
the [110] direction were chosen.

The specimen was prepared by cutting a slab from a
single crystal, mechanical thinning and ion milling. It was
approximately 100 nm thick. The incident electron beam
was oriented parallel to the (001) axis of the rutile crystal.
In the first experiment, the scattering angle u was set to
zero, corresponding to q � 0. In the second experiment
we set the spectrometer aperture at (0.5, 0.5, 0) in the
diffraction plane, corresponding to a Bragg angle of u �
1.73 mrad, and to q� � 0.4 Å21. Since qjj is small, the
scattering vector points almost in the (110) direction.

Experiments were performed at 160 kV acceleration
voltage in a Philips CM20 TEM equipped with a LaB6
filament. Spectra were recorded in diffraction mode
(image coupling) with a GATAN 666 spectrometer in
typically 1 sec for zero scattering angle and 10 sec for
u � 1.73 mrad. The full width at half maximum of the
zero-loss peak, giving the energy resolution, was 1.2 eV.
After automatic dark count and gain correction, the tail of
the zero-loss peak was removed with the standard EL/P
routine [19]. The beam was strongly overfocused in order
to achieve a sufficiently parallel bundle. The half-angle
subtended by the illumination cone was estimated to
0.17 mrad for q � 0, and 0.78 mrad for q � 0.4 Å21.
The collection angle subtended at the spectrometer
aperture was estimated to be 0.09 mrad for q � 0, and
0.32 mrad for q � 0.4 Å21.

The loss function relates to the double differential in-
elastic scattering probability for fast electrons as

≠2p
≠V≠E

� D
4p´0

�epa0�2 Im

µ
21
q ¯́q

∂
, (2)

where D is the sample thickness, a0 is the Bohr radius,
¯́ is the macroscopic dielectric tensor, q is the scatter-
ing vector decomposed into a perpendicular component
q� � k0 tanu, and a parallel one qjj � k0uE . k0 is the
incident electron’s wave vector, u is the scattering angle,
and uE � Elossm�h̄2k2

0 is the characteristic angle depend-
ing on the energy loss Eloss and on the relativistic mass
m of the beam electron. When comparing the data ob-
tained at vanishing q, Eq. (2) must be integrated over an
experimentally determined angular range b taking into
account both the finite aperture of the illuminating sys-
tem and of the spectrometer. Assuming a Lorentzian an-
gular distribution of the loss function, one obtains [20]
037601-3
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FIG. 3. Integrated loss function at q � 0 for b � 0.12 mrad.
Solid line: experiment. Dashed line: TDLDA. Thick line: RPA.
For clarity, RPA has been omitted when indistinguishable from
TDLDA. Inset: RPA without LFE.

I�E� ~ 2Im

"
p

´��0�
ln

√
1 1

b2´��0�
u

2
E´k�0�

!#
. (3)

Equation (3) was fitted to the experiment, and the best
result obtained for b � 0.12 mrad, within the range of
experimental uncertainty of 0.1– 0.2 mrad. In Fig. 3, the
logarithmic factor suppresses intensity at high energy
compared to the loss function of Fig. 2. When LFE are
included, the agreement between theory and experiment is
excellent, as compared to neglect of LFE (Fig. 3, inset).

In order to study the role of the exchange-correlation
contributions, we also report in a dashed line the results
obtained within time-dependent DFT in the adiabatic lo-
cal density approximation (TDLDA [21]). We recall that
in this framework, ´21 � 1 1 yx0�1 2 �y 1 fxc�x0�21,
where the exchange-correlation kernel fxc is the functional
derivative of the Kohn-Sham exchange-correlation poten-
tial with respect to the density. As found in other systems,
the effect is visible only for those structures where strong
LFE occur [22]. The plasmon peak and the collective
excitation at 25 eV are weakly affected by the inclusion
of the exchange-correlation kernel, whereas the semicore
peak exhibits a small shift towards lower frequencies and
a slight increase of the intensity.

It is expected that LFE increase for increasing q. We
have therefore calculated ´��q� for q � 0.4 Å21 in
the [110] direction. The spectrum without LFE —not
shown—yields results which are very similar up to 25 eV
to those reported in Fig. 1, apart from a shift of the plas-
mon peak of 1 eV towards lower frequency. The broad
collective excitation at 25 eV hardly changes. To compare
to the experiment, the intensity is now obtained from [20]
I�E� ~ 2Im

∑Z 2p

0

Z b

0

df g dg

u
2
E´k�0� 1 �u2 1 g2 1 2ug cosf�´��q�

∏
, (4)
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FIG. 4. Integrated loss function at q � 0.4 Å21 for b �
1 mrad. Solid line: Experiment. Dashed line: RPA results. The
inset shows the theoretical results without LFE.

where b is 1 mrad. At low energy, the differences seen
between the theoretical spectra without LF in the insets
of Figs. 3 and 4 thus come from the different experimental
geometries expressed in Eqs. (3) and (4). At higher energy
the theoretical joint density of states sharply decreases and
the main semicore peak drastically changes both in posi-
tion, now at 41.2 eV, and intensity. LFE reduce even more
the intensity and the position of the peak is shifted by more
than 6 eV: at 47.3 eV, it is in very good agreement with
experiment.

In conclusion, we have calculated and measured the
EELS of rutile in the range of 0–60 eV. We find that the
inclusion of LFE is particularly important at high energy
where transitions from the localized semicore states are
involved. TDLDA has only minor consequences on the
spectrum, and in view of the very good results, it seems
justified to neglect further exchange-correlation effects in
that energy range, which means that self-energy and direct
electron-hole interaction effects essentially cancel each
other. Moreover, we have shown how the anisotropy of the
surroundings of an otherwise isotropic localized level influ-
ences the resulting spectra when LFE are included. Since
it turns out that relatively few spatial frequencies are suffi-
cient to reasonably describe these effects, the calculation
of reference spectra for the interpretation of experiments is
feasible in a plane wave basis even in the energy range of
the semicore levels. Useful information about the structural
and chemical environment of the corresponding atoms may
therefore be obtained by combining EELS measurements
and calculations.
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