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Spin Textures, Screening, and Excitations in Dirty Quantum Hall Ferromagnets
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We study quantum Hall ferromagnets in the presence of a random electrostatic impurity potential.
Describing these systems with a classical nonlinear sigma model and using analytical estimates supported
by results from numerical simulations, we examine the nature of the ground state as a function of disorder
strength, D, and deviation, dn, of the average Landau level filling factor from unity. Screening of an
impurity potential requires distortions of the spin configuration, and in the absence of Zeeman coupling
there is a disorder-driven, zero-temperature phase transition from a ferromagnet at small D and jdnj to
a spin glass at larger D or jdnj. We examine ground-state response functions and excitations.
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Quantum Hall ferromagnets (QHFMs) are interesting
especially as systems in which spin configurations and
charge density are closely linked [1]. At small Zeeman en-
ergy and for Landau level filling factor n close to unity, this
link has the celebrated consequence that the charged quasi-
particles with the lowest energy are not single electrons but
Skyrmions [2]. These bound states of a minority-spin elec-
tron with one or many spin waves may be viewed classi-
cally as topological excitations of an ordered ferromagnet:
in this description, the deviation of local charge density
from that of a filled and ferromagnetically polarized Lan-
dau level is proportional to the topological density [3] of
the spin configuration. For a clean QHFM with sufficiently
small Zeeman energy, Skyrmions or anti-Skyrmions are in-
troduced at zero temperature on varying the average fill-
ing factor from n � 1 to larger or smaller values and, at
nonzero temperature, are generated thermally in pairs to-
gether with spin waves. For dirty QHFMs, coupling of an
electrostatic impurity potential to the charge density offers
an additional mechanism by which spin textures may arise:
the consequences of such a coupling are the subject of this
paper.

The interplay between disorder and exchange for
QHFMs has been examined previously from several
different viewpoints. Fogler and Shklovskii, building on
earlier discussions, have developed a mean field treatment
in the spirit of Stoner theory, finding for odd integer n

in the absence of Zeeman coupling a transition between
ferromagnetic and paramagnetic ground states with in-
creasing disorder strength [4]. They suggested that this
transition should be apparent in transport measurements,
in which the ferromagnetic phase is characterized by
spin-resolved Shubnikov–de Haas oscillations and the
paramagnet by spin-unresolved oscillations. Experimen-
tally, a transition of this kind is observed with decreasing
magnetic field strength [5], and its sharpness suggests that
its origin is indeed cooperative. Within such an approach,
proposed for higher Landau levels where Skyrmions
are normally not stable, local moments are all collinear
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in the ferromagnet and vanish in the paramagnet. By
contrast, near n � 1, an alternative is that a QHFM
may respond to disorder mainly via the direction rather
than the magnitude of its local magnetization. Some
indications that this can happen come from calculations
for the fully polarized ferromagnet at weak disorder.
Here, a reduction in spin stiffness with increasing disorder
strength has been interpreted by Green [6] as a precursor
of a noncollinear phase. Moreover, even weak disorder
may nucleate a dilute glass of Skyrmions (over minima
in the electrostatic potential) and anti-Skyrmions (over
maxima), as discussed by Nederveen and Nazarov [7]. In
addition, at intermediate disorder strength both reduced
and noncollinear local moments emerge from a numerical
solution of Hartree-Fock theory for a model with Coulomb
interactions and spatially uncorrelated disorder, by Sinova,
MacDonald, and Girvin [8]. More generally, the relative
importance for dirty QHFMs of local moment reduction
versus the formation of spin textures will depend on the
nature of disorder. In the following we focus on textures,
favored by a smoothly varying impurity potential.

To this end, consider a quantum Hall system with n

close to unity, impurity potential V �r�, electron density
r�r�, and electron-electron interaction energy U�r�. As
a first step, treat screening using Thomas-Fermi theory,
omitting exchange interactions and Zeeman energy. Within
this approximation, developed by Efros [9] for the com-
parable problem in spin-polarized Landau levels when n

lies near half-integer values, the ground-state charge den-
sity at weak disorder is determined by the condition that
the Hartree potential should everywhere match the chemi-
cal potential: m � V �r� 1

R
U�r 2 r0�r�r0� d2r0. We

are concerned with circumstances in which the resulting
density varies smoothly on the scale of the magnetic length,
lB, and has fluctuations from n � 1, dr�r� � r�r� 2

�2pl2
B�21, which are small: jdr�r�j ø r�r�. Restoring

exchange interactions under these conditions results lo-
cally in maximal ferromagnetic polarization of electron
spins, with a direction that may vary in space. Denoting
© 2002 The American Physical Society 036801-1



VOLUME 88, NUMBER 3 P H Y S I C A L R E V I E W L E T T E R S 21 JANUARY 2002
this direction by the three-component unit vector �S�r�, its
spatial fluctuations are linked to electron density via [2,3]

dr�r� � �8p�21eijeabgSa≠iS
b≠jS

g . (1)

An exchange energy is associated with such variations:
combining exchange (with interaction constant J), impu-
rity, and Hartree contributions to the total energy, and
choosing for simplicity a short-range interaction U�r 2

r0� � U0d�r 2 r0�, we take as our description of a dirty
quantum Hall ferromagnet the configurational energy

H �
Z µ

J
2
j= �S�r�j2 1 V �r�dr�r�

1
U0

2
�dr�r��2

∂
d2r . (2)

Doing so, we neglect quantum fluctuations of �S�r�, as
is justified in the semiclassical limit, j= �S�r�j ø l21

B , to
which we are already restricted. We choose for simplicity
V �r� Gaussian distributed with amplitude D and correla-
tion length l.

Our aim in the following is to understand the zero-
temperature phase diagram of the model defined by
Eq. (2), and to characterize its ground states via their
response functions and excitations. As an example of a
disordered electron system, it is unusual in that there is
an exchange gap for single-particle excitations, even if
the ground-state spin configuration �S�r� is not ferromag-
netically ordered, so that the only low-energy excitations
involve collective spin modes. As an example of a ferro-
magnet with quenched disorder, the system is also unusual
in several ways. First, the coupling to disorder leaves
spin-rotation symmetry intact but breaks time-reversal
symmetry, in contrast to random magnetic fields, which
break both symmetries, and to random exchange inter-
actions, which leave both symmetries intact. Second,
because of the same coupling, the spin system responds
to applied electric fields: we calculate the wave vector–
dependent dielectric susceptibility, comparing with be-
havior found in more conventional disordered electron
systems. Third, the link between spin and charge also
endows spin waves with an electric dipole moment: we
calculate the spin-wave contribution to the optical conduc-
tivity in disordered spin states, complementing Green’s
results [6] for the polarized ferromagnet with impurities.

We start with a simple discussion of the phase diagram.
The model is characterized by two energy scales, J and D,
and two length scales, l and LH � �U0�J�1�2. The last
of these, which we call the Hartree length, plays an im-
portant role in what follows. Its significance can be made
clear by comparing, for a Skyrmion of fixed shape and ra-
dius R in a clean system, the contributions to total energy
from exchange and from Hartree interactions, of order J
and U0�R2, respectively: exchange dominates on length
scales large compared with LH, while Hartree interactions
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dominate at smaller distances. We use the limit l ø LH

as a source of simplifications in analytical estimates, but
take l & LH in numerical simulations.

Examine first the ground state for �dr� � 0 as a
function of D�J. At weak disorder (D & J) it can be pic-
tured as a dilute glass of Skyrmions and anti-Skyrmions,
discussed in Ref. [7]. This reflects the existence of a
threshold [6–8], defined by jV �r�j � 4pJ: in most parts
of the system (roughly, those where jV �r�j is below
threshold) ferromagnetic order is essentially unaffected
by the impurity potential [10]. More precisely, for any
�S�r� one has j= �S�r�j2 $ 8pjdr�r�j and hence H $R
�4pJjdr�r�j 1 V �r�dr�r��d2r, which for V�r� below

threshold everywhere implies that the ground state is
the perfectly aligned ferromagnet with dr�r� � 0. At
stronger disorder (D ¿ J), by contrast, screening is
almost perfect at short distances and dr�r� 	 2V �r��U0.
Corrections to such screening arise at and beyond the
scale LH, where exchange is important. We can summa-
rize the effect of exchange by dividing the system into
regions of area L2

H, finding for each such area the integral
Q � 2

R
V �r��U0 d2r, and adjusting the total screening

charge within every region to the integer value closest to
Q. We argue that these integers are predominantly zero
in a ferromagnetic phase, and predominantly nonzero
in a phase without ferromagnetic order. To see this,
consider a well-ordered ferromagnetic phase, in which
S�r� as a function of r has small fluctuations around
a global direction of magnetization. In this case, the
net topological charge in each region has magnitude
much less than one. Conversely, in a phase without such
order, unit topological charge accumulates in a region of
linear size given by the ferromagnetic correlation length.
The phase boundary for the ferromagnet is therefore
located by setting �Q2�1�2 
 1. Since each area of size
l2 contributes to Q a charge of magnitude l2D�U0
with random sign, �Q2�1�2 
 lLHD�U0 yielding Dc 

U0��lLH� � J�LH�l�. For D . Dc the ground state
has no ferromagnetic order; because within a classical
zero-temperature description spins are frozen, we identify
this phase as a spin glass.

Consider next the ground state at fixed D , Dc, as a
function of �dr�. Charge is introduced into the system
for �dr� . 0 as Skyrmions of size R. In the presence
of Hartree energy alone, R is divergent, but fluctuations
of an impurity potential establish an optimal size, by
generating random potential wells. For R ¿ l these
have an average depth D�l�R� (the case R & l is treated
in Ref. [7]). The contributions to the Skyrmion energy
from these two sources are of the order of U0�R2 and
2Dl�R, respectively; minimizing their sum, we find
R 
 U0��Dl� � LH�Dc�D�. (Note that, since R . LH
for D , Dc, screening as discussed in the previous
paragraph does not alter this argument.) We expect
ferromagnetic order to persist with increasing �dr� until
such Skyrmions overlap, so the phase boundary lies
036801-2



VOLUME 88, NUMBER 3 P H Y S I C A L R E V I E W L E T T E R S 21 JANUARY 2002
at �dr�c 
 L22
H �D�Dc�2. In this way we arrive at the

schematic phase diagram shown in the inset to Fig. 1.
In order to test these arguments, we have studied ground

states of a lattice model numerically. In outline, we re-
place Eq. (2) with a Heisenberg model on a square lattice
which has nearest-neighbor ferromagnetic interactions of
strength J and a topological charge defined on each ele-
mentary plaquette. These charges contribute to the total
energy by a local Hartree interaction with coefficient U0,
and by their interaction with plaquette potentials, indepen-
dently and uniformly distributed in �2D, D�. Thus l � 1
in units of the lattice spacing. We find low-energy states
using a simulated annealing procedure similar to that of
Ref. [11], and can identify states that are equivalent un-
der a global rotation by comparing total energies and also
charge distributions. Using system sizes up to 562 spins
and annealing with 106 Monte Carlo steps per spin, for
a given disorder realization in successive runs we repeat-
edly reach states from a small set: we take the lowest
of these in energy to be the ground state. In the ground
state for each disorder realization we calculate the site-
averaged magnetization, M � j� �S�r��j. We also determine
the ground-state susceptibility x, from the response to a
Zeeman field applied in the direction of the magnetization;
the ground-state spin stiffness rS, from the energy cost of
long-wavelength twists imposed on the spin configuration;
and the wave vector –dependent compressibility, from the
linear response of dr�r� to a periodic potential added to
V �r�. Further details of our methods will be described
elsewhere [12].

Representative results are shown in Fig. 2. Taking
�dr� � 0 and U0 � 8pJ, we present M, x, and rS as a
function of disorder strength, D�4pJ, using 402 spins and
an average over three disorder realizations. Three regimes
are evident from the behavior of M. For D�4pJ , 1,
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<δ
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QHSG

FIG. 1. Phase diagram for LH �
p

4p l, obtained from simu-
lations. Inset: phase diagram for LH ¿ l, obtained from ana-
lytical arguments described in the text.
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the ground state is a fully polarized ferromagnet, because
we use a bounded disorder distribution. For 1 , D�
4pJ & 2.5, the ground state is a partially polarized
ferromagnet (though with an almost saturated magneti-
zation for 1 , D�4pJ & 1.8). And for 2.5 & D�4pJ,
the ground state is, we argue, a spin glass, with a small
nonzero M arising as a finite-size effect. In support of this
interpretation, a large peak in x indicates a phase transi-
tion at D�4pJ � 2.5. Moreover, the distinction between
phases is illustrated by their spin stiffness, specified in
full by a 3 3 3 symmetric tensor. We plot the eigenvalues
of this in Fig. 2. For the fully polarized ferromagnet,
rotations about the magnetization direction do not alter
the spin configuration, and so one eigenvalue is zero
while the other two are degenerate. For the partially
polarized ferromagnet, all three eigenvalues are nonzero,
with two remaining degenerate. And at 2.5 & D�4pJ
magnetic isotropy and finite spin stiffness in the spin glass
are illustrated by the fact that all three eigenvalues are
approximately degenerate and nonzero.

Repeating such calculations for �dr� . 0, we determine
the phase diagram shown for U0 � 4pJ in the main panel
of Fig. 1, which is qualitatively similar to that in the inset.
The maximum density range over which disorder may sta-
bilize the ferromagnet, j�dr�j & 1022 in units of charge
per plaquette, is strikingly narrow.

We now turn to the dielectric response of the partially
polarized ferromagnet and spin glass, characterized at
zero frequency by the wave vector –dependent dielectric
susceptibility xe�q� or by the compressibility k�q�, with
k�q� � q2xe�q�e0�e2. To fix definitions, take V �r� !
V �r� 1 V1 cos�q ? r� in Eq. (2): the ground-state electron
density changes according to dr�r� ! dr�r� 1 dr1�r�
and the disorder-averaged linear response is �dr1�r�� �
2k�q�V1 cos�q ? r�. We can apply to k�q� the approach
used in our discussion of the phase diagram: the Hartree
length LH again plays an important role, within our model
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FIG. 2. Ground-state properties as a function of disorder
strength: magnetization M , susceptibility x , and eigenvalues
rS of the spin stiffness tensor.
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FIG. 3. Compressibility k�q� as a function of wave vector q
for systems with J � 1 and U0 � 4p (�, 1) or U0 � 8p (�,
3); full line: quadratic fit at small q.

problem in which Coulomb interactions are omitted.
For q ¿ L21

H , exchange may be neglected and k�q� 	
U21

0 . More generally, we anticipate the scaling form
k�q� � U21

0 f�LHq�, with f�x� constant at large x. For
q ø L21

H we expect that exchange dominates and hence
that k�q� should be independent of U0 in this regime.
In turn this implies for the scaling function f�x� ~ x2 at
small x, so that k�q� ~ �qLH�2U21

0 � Jq2 for q ø L21
H .

To summarize, the response is that of a metal [k�q�
constant] at large wave vectors, and that of an insulator
[xe�q� constant] at small wave vectors [13].

We have tested these arguments using the simulation
methods outlined above. Results for k�q� are displayed in
Fig. 3, where we compare behavior in systems with J � 1
and U0 � 4p or U0 � 8p, combining for each case data
from lattices of size 402 and 562 in order to maximize
wave-vector resolution. The distinction is clear between
a U0-independent k�q�, quadratic in q, at small q, and a
q-independent k�q�, varying roughly as U21

0 , at large q.
Finally, we consider optical conductivity s�v� at fre-

quency v. A spin glass in the absence of Zeeman en-
ergy is expected [14] to support three degenerate Goldstone
modes. Their dispersion is linear at small frequencies with
speed c � �rS�x�1�2. In an QHFM they have an electric
dipole moment, which arises because they propagate in a
noncollinear ground state. Their contribution to s�v� is
determined by a product of the mean square dipole mo-
ment with the density of states. We find [12]

s�v� 

e2

h

µ
vj

c

∂2 h̄v

J
, (3)

where j is the spin correlation length. We estimate,
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for example, s�v� 
 1025e2�h at 10 GHz, using c 

104 ms21 (obtained from our numerical simulations), J �
40 K, and j � 1027 m. Variable-range hopping would
mask this contribution to s�v� but should be absent if
spins locally have maximal polarization throughout the
sample.
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