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Fractional Quantum Hall Effect in an Array of Quantum Wires
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We demonstrate the emergence of the quantum Hall (QH) hierarchy in a 2D model of coupled quantum
wires in a perpendicular magnetic field. At commensurate values of the magnetic field, the system can
develop instabilities to appropriate interwire electron hopping processes that drive the system into a
variety of QH states. Some of the QH states are not included in the Haldane-Halperin hierarchy. In
addition, we find operators allowed at any field that lead to novel crystals of Laughlin quasiparticles.
We demonstrate that any QH state is the ground state of a Hamiltonian that we explicitly construct.

DOI: 10.1103/PhysRevLett.88.036401

The rich phenomenology of the quantum Hall (QH) ef-
fect provides a fertile setting for the study of correlated
electrons [1]. While the integer QH effect can be under-
stood in terms of the Landau quantization of noninteracting
electrons, the fractional QH state is a strongly correlated
quantum liquid, where electron-electron interactions play
an essential role. Motivated by Laughlin’s original varia-
tional wave function [2], a number of techniques have been
developed to describe the hierarchy of fractional QH states
[3], including composite fermion variational wave func-
tions [4] and Chern-Simons field theories based on bosons
[5,6] or fermions [7]. These have led to a deep under-
standing of the excitation spectrum of QH states and of
the structure of the QH hierarchy.

The purpose of this Letter is to develop a new formal-
ism, which reproduces the QH hierarchy in a model con-
sisting of a two-dimensional array of quantum wires in a
perpendicular magnetic field B. The model could be rele-
vant for semiconductor quantum wires, ropes of carbon
nanotubes, and for stripes that arise in QH systems in the
higher Landau systems [8]. Aside from the direct rele-
vance of the model, our calculations provide a novel, and
in many ways a simpler, approach to describe the fractional
QH effect. Given its success in treating the fractional QH
effect, it is likely that our technique will prove useful for
understanding other strongly correlated states.

We use the bosonization technique [9], developed for
one-dimensional systems, and relate the QH effect to cou-
pled Luttinger liquids. It has been shown recently [10—12]
that for a range of interwire charge and current interactions,
there is a phase in which interwire Josephson, charge- and
spin-density wave, and single-particle couplings are irrele-
vant. This sliding Luttinger liquid (SLL) or smectic metal
phase is the quantum analog of the sliding phase found
recently in DNA-lipid complexes and stacked XY mod-
els [13,14]. The SLL resembles a Luttinger liquid, with
transport properties that exhibit power-law singularities as
a function of temperature. It has also been demonstrated
[15] that in a magnetic field the phase space of SLL ex-
pands considerably.

We show that at commensurate magnetic fields the SLL
phase can be unstable to interwire electron hopping pro-
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cesses that lead the formation of an energy gap and the
QH effect. The presence of the » = 1 QH state in such a
model was first noted by Sondhi and Yang [15]. Our cal-
culation builds on this work. We systematically classify all
electron hopping operators and identify those that lead to
QH states. This construction leads to QH states which are
not in the Haldane-Halperin hierarchy [3]. We also show
that any QH state is the ground state of a Hamiltonian that
we explicitly construct.

We begin with a simple model of spinless electrons that
ignores both electron-electron interactions and tunneling
between the wires. In the Landau gauge A = —ByX, the
electronic dispersion has the simple form

h2
Ejk) = —(k = bj)*, e9)

where the integer j labels the wires, b = eaB/lc, and a
is the separation between neighboring wires. This disper-
sion is characterized by level crossings, where the bands
associated with different wires intersect. Tunneling be-
tween the wires couples the bands, leading to anticross-
ings, as indicated in Fig. 1. The Fermi energy, Er, lies in
one of these gaps when the filling factor v = 2kp/b is an
integer (here kr = mn, depends on the 1D electron den-
sity n, on each wire). In general, the gap at Ef for v = N

FIG. 1. A schematic diagram showing how the Landau lev-
els, denoted by the solid curves, arise due to coupling between
neighboring single-wire bands.
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results from tunneling between Nth neighbor wires. At
these fillings, we have the analog of filled Landau levels
and the integer QH effect. It can further be observed in
Fig. 1 that each filled Landau level has a corresponding
branch of gapless edge states.

Away from integer filling fractions the noninteracting
theory has gapless excitations on each wire and corre-
sponds to a trivial SLL fixed point. It should be noted
that near Ey the dispersion (1) is equivalent to what would
be expected in a mean field theory of QH stripes [16]. The
only difference is that the left and right moving states at
EFr are no longer localized on the same wire, but rather are
spatially separated. Thus, in addition to arrays of quantum
wires what follows may also describe instabilities of stripe
phases.

With interactions, the SLL fixed point is quite delicate,
and one usually expects instabilities at low energies. To
characterize the resulting phases we bosonize the states
near Er and write [9]

i(b.iikF)xei(bR/L.j(x) (2)

1
‘/’R/L,j(x) = \/?_e MNR/L,j€

where € is an interwire cutoff and 7 is the Klein
factor. The bosonic fields g, ; are related to the
right and left moving electron density on each wire,
ngjLj = *xPryr.j/27, which satisfy the current alge-
bra, [nR/L’j(x),nR/L,j/(x/)] = iiaxé(x - x/)&,-]-//277.

The noninteracting model has the Hamiltonian density
Hy = mvp > [nL;(x)* + ngj(x)*], where vp is the
Fermi velocity. There are two classes of interactions: for-
ward scattering and interchannel scattering. The forward
scattering terms involve interactions between the densities
of the various channels, leading to a Hamiltonian which
is quadratic in the densities,

His = n;(x)"M;jn;(x), 3)

where n! = (ngi,nr,;) and M;; is a 2 by 2 matrix. H, +
H;, describes a general SLL fixed point. To address the
instabilities of this fixed point, we consider interchannel
scattering interactions. The allowed terms are built from
products of single-electron operators and may be classified
according to the number of times each electron operator
appears:

J

Oprry = O [1Wrjep)" Wrjep)®, @)
P

where sL, s®

,» S, are integers and ¢° is taken to mean ()]
for s < 0. Charge conservation requires 3, [sk + s5] =

0, while momentum conservation requires
ke Y (SR —sby+ D> psR +sh=0. (5
P P

Operators violating (5) will upon bosonizing using (2) have
an oscillating phase that renders them irrelevant at long
distances.
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The SLL fixed point is unstable if any allowed interchan-
nel scattering interactions are relevant under the renormali-
zation group. This happens when the scaling dimension
A{x’;,sﬁ} < 2. We then expect the system to flow to a phase
which is characterized by @{sﬁ,s,e}- A{ffi’sﬁ} depends on the
forward scattering interactions M;;. In principle, M;; can
be parametrized with a suitable model of the electron-
electron interactions. However, M;; may be strongly
renormalized by irrelevant and/or momentum noncon-
serving operators, and it may not resemble the bare
interactions. Below we argue that it is usually possible
to construct a Hamiltonian in which a given operator
O is the leading relevant operator. Our approach is,
therefore, to assume that O is relevant. We then analyze
the resulting strong-coupling phase.

Symmetry requires operators related by 180° rota-
tion to be equivalent. We refer to operators which
are invariant under 180° rotation as ‘‘nondegenerate.”
Upon bosonization these interactions have the form
Hine = — D ;ucosE;, where u is the magnitude of the
interaction and Z; = ), (sﬁq)ﬁp + séd),-];p). For large
u this tends to lock E;. Since nondegenerate operators
satisfy sll; = ts’fl, it follows that[=;, E;] = O forall i, j.
Thus all E; can be simultaneously localized, and the strong
coupling phase may be described by replacing —u cos=;
by uE7?/2. The Hamiltonian is then quadratic in the boson
fields and the low-energy excitation spectrum can be de-
termined. Lower-symmetry “degenerate” operators must
come in pairs. An example is the single electron tunneling
term Y ;[cos(Pr; — Pgir1) + cos(®p; — Prir1)],
which leads to a 2D Fermi liquid at B = 0. This in-
teraction cannot be analyzed by replacing the cosine by
a square because the arguments of the cosines do not
commute, so localization is forbidden by the uncertainty
principle. We confine our attention here to nondegenerate
operators, which can be analyzed using bosonization.

The phases described by nondegenerate operators at fi-
nite B fall into the following two general categories [17]:

(1) Crystalline states: From (5) it can be seen that when
both >, 55 =3, 55 =0 and >, p(si + s5) =0, the
operator Oy, ,1 is allowed for any B. These operators,
which independently conserve the number of right mov-
ing and left moving electrons lead to crystalline phases
of the electrons. A simple example is the charge den-
sity wave (CDW) operator ) ; cos[2(0; — 6;+1)], where
0; = (bg,; — ®.;)/2 is the CDW phase on each wire.
When this operator, depicted in Fig. 2b, dominates, the
CDW’s on neighboring wires lock together forming a two-
dimensional Wigner crystal. It can be seen by expand-
ing the cosine that this state has a gapless phonon mode
associated with the broken translational symmetry. This
category also includes more exotic crystals, such as the
Abrikosov flux lattice [18] (Fig. 2e) and crystals of Laugh-
lin quasiparticles (Fig. 2f). These states share the common
feature that they are allowed at any B and possess a gapless
phonon mode.
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FIG. 2. Pictorial representation of tunneling operators corre-
sponding to the following states: (a) superconductor, (b) CDW,
(¢c) » = 1 QH state, (d) » = 1/3 QH state, (¢) Abrikosov flux
lattice, (f) crystal of » = 1/3 Laughlin quasiparticles. (g),(h)
Two distinct » = 2/3 QH states.

(ii) Quantum Hall states: When >, sX # >, s the
operator Oy, ) is allowed only at a special magnetic field
which corresponds to filling factor

R + SL
_, Z,,p(sL,, R,,) . ©
>, (5 — sB)

The denominator of (6) counts the net number of electrons
backscattered from right to left moving channels. The
numerator gives the change in the “center of mass” of
the electrons. By replacing the cosine by a square, it
can be established that these states have a gap to bulk
excitations and have gapless edge states. The simplest
example is the v = 1 QH state described by the operator
> cos[(DR, — @, ;1] (Fig. 2c). This locks the right and
left moving modes of neighboring wires, opening a gap for
all modes except for the edge mode ®; |, which remains
uncoupled. This is equivalent to the description in terms
of noninteracting electrons shown in Fig. 1.

In addition to the integer QH states, which have “single
particle” energy gaps, there are a variety of fractional
QH states whose gaps arise from correlated tunneling
processes. The simplest ones correspond to the Laughlin
sequence at v = 1/m, where m is an odd integer, and are
shown in Fig. 2d for » = 1/3. An electron hops from
one wire to the next while simultaneously backscattering
(m — 1)/2 electrons on each wire. To establish the
equivalence between the resulting state and the usual
Laughlin states, it is necessary to identify its topological
order which may be characterized by the set of fractionally
charged quasiparticles and by the structure of the gapless
edge states [19].

It is useful to transform the Hamiltonian into a form
where the edge state and quasiparticle structure are trans-
parent. We begin by defining ¢; = (Pr; + P ;)/2,

036401-3

i = (®Pg; — P j)/2. 0; is related to the charge den-
sity, nj = 0,0;/m, and ¢, is the conjugate phase. The
interaction in Fig. 2d then has the form

= ZCOS[m(0]'+1 +6;) —
J

eiv1 + o)l
(7)

@Laughlin,m

We now define new right and left moving fields, ® JLj =
@j/m = 6;, which commute with each other and satisfy
[d)R/L,(x) d)R/L,(x N = *imsgn(x — x )/m Equa-
tion (7) now becomes > ; cos[m(d)Rj o j+1)]. This
is similar to the » = 1 integer QH effect: left movers
on wire j + 1 lock to right movers of wire j, while
®;, decouples and remains gapless. It is further
simplified by transforming to new charge/phase varia-
bles, where we “switch partners” for the right and
left movers: 6112 = (Prj — Prj+1)/2, @j+12 =

(d)Rj + d)L,+1)/2 In terms of 0;+1/2, ¢+1/2, and d)L 1
we have H = H, + H. + .’7—[fs, where

H, = Z V(040 +1/2)* + (0:@j+1/2)°]
=1
— ucos2mb ;.1 (®)

describes bulk states, H, = v,(9, P, 1)? describes edge
states and Hj is quadratic in 9, &;, axé,-, and 8xd~)1‘,1.

When u flows to strong coupling, 2mé,~ is pinned at a
multiple of 277, and there is a gap to bulk excitations. Soli-
tons in which 2m#@); advances by 27 are Laughlin quasi-
particles. Since n; = 9,0;/ their charge is clearly e/m.
To describe the low-energy edge excitations, the gapped
bulk modes may be integrated out. The only effect of FH,
is then to renormalize the velocity v, of the edge states.
The integer m which appears in the commutation relation
obeyed by ®; ; characterizes chiral Luttinger-liquid edge
states [19] and determines the Luttinger-liquid suppres-
sion of the tunneling density of states, p(E) « E™~ D, It
should be noted that the electron creation operator for the
edge states is ¥, = e Pt ~ g0 (Yol p? )" =V/2 The

e LIWRIVLL
bare electron creation operator 1/;2,1 involves @3/, and is
gapped.

We now address the dimension of (7) at the SLL fixed
point. We demonstrate that by carefully choosing a par-
ticular set of interaction parameters we can make (7) as
relevant as we like, postponing a systematic search through
parameter space to a later publication. Working in the
transformed representation, let Hy, = w > ; (9,0;+1 /2) .
Then the dimension of cos(2m#, ., ) is A =2m(1 +
w/v)~Y2. Thus for sufficiently large w, A < 2. More-
over, any other allowed operator necessarily involves either
higher powers of 0; 11 /2 0 §;+1/5. Since the dimension of
expli@iti/2]is (1 + w/v)'/2/2m, these operators are ir-
relevant for sufficiently large w. Thus, we have established
that it is possible to construct SLL models that are unstable
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to the QH interactions and flow at low energy to the strong
coupling QH state. This construction can be generalized
to the more exotic QH states considered below.

The QH states occur only at special magnetic fields, and
it is well known that disorder is crucial for the existence of
QH plateaus. Suppose we are close to, but not at, a Laugh-
lin fraction, v = 1/m + 8. The violation of momentum
conservation in (7) becomes evident only on a length scale
& o« 871, On shorter lengths (7) tends to renormalize Hi,,
generating a term of the form Y (9,6;11/2)>. It is thus
natural to expect that for lengths larger than £ one is in the
limit of large w described above. While cos[2m6; /2]
is now forbidden because (5) is violated, a corresponding
operator, cos[2m(f;+1/2 — 0;-1/2)], is allowed. This op-
erator, depicted in Fig. 2f for m = 3, describes a crystal
of Laughlin quasiparticles and is most relevant for large
w. If this crystal is pinned by weak disorder, then there
is a plateau in the Hall conductance. The pinned crystal
retains the edge states of the » = 1/m state.

We have focused, so far, on the v = 1/m states, which
are generated by two-wire operators. Hierarchical QH
states are generated by operators involving more wires.
For concreteness we consider two three-wire operators at
v =2/3: O (Fig. 2g) and O (Fig. 2h). To analyze
the resulting phase if either of these is relevant, we again
write H = Hegge + Hpix + Hp. As before, by ad-
justing Hys we can make either O; or @;; dominate. The
resulting phase is gapped in the bulk, and there are two

edge modes [20] @5

(edge)
[(edee) (x), @ 5 5

) which obey
(] = —imK, gsgn(x — x'). (9)

The matrix K encodes the structure of the QH states. For
Oy, K, in a diagonal basis, has Ki; = 1, Ky = —3. This
state belongs to the Haldane-Halperin hierarchy [3] and has
two edge states which propagate in opposite directions. For
Oy;, K has the diagonal form K;; = K, = 3. This state,
whose edge states propagate in the same direction, does not
belong to the usual hierarchy, but rather to a more general
hierarchy considered by Wen and Zee [6]. It is related to
a bilayer state in which each layer is in a v = 1/3 state.
These states can be distinguished by their exponents for
the temperature dependence of tunneling into the edge.

In this Letter we have developed a new formalism that
allows us to obtain the complete hierarchy of QH states
with considerable ease. However, many questions remain.
It would be interesting to use this approach to study the
plateau transitions in the fractional QH effect, which would
be manifested as transitions between different quasiparti-
cle crystals. In addition, we have considered only spin-
polarized electrons; it is possible that by taking into
account spin-dependent interactions we could extend
our formalism to explain, for example, the QH effect in
quasi-1D conductors [21], or conductance measurements
for quantum wires. We desire to understand the nature of
the phases corresponding to degenerate operators, which
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should include Fermi liquids of composite particles [7].
Finally, it would be interesting to see whether, within
our formalism, it is possible to obtain the Pfaffian state
suggested for » = 5/2 [22]. These form the subject for
future investigations.
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