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We demonstrate for the first time that the temporal response of a random medium can be obtained from
optical intensity fluctuations. Our method uses third-order intensity correlations of measured speckle
patterns from a multiple scattering random medium as a function of optical frequency. In particular,
our experimental results for the temporal response extracted from third-order intensity correlations are
in good agreement with the predictions of a diffusion model. Our results are valid for waves in random
media where the scattered field is described by circular complex Gaussian statistics.
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Coherent waves propagating in a random medium lead
to fluctuations in the measured intensity due to interfer-
ence of the multiply scattered waves. The coherent waves
can be classical waves such as electromagnetic or acoustic
waves, or quantum waves such as those associated with
electrons in a mesoscopic system where inelastic scat-
tering does not dominate. The former gives rise to ob-
served speckle patterns in the intensity [1], whereas the
latter leads to the universal conductance fluctuations seen
in mesoscopic samples of disordered metals [2]. For opti-
cal speckle patterns, it is possible to directly measure the
correlation between intensities at two different illumina-
tion frequencies, or between speckle patterns with differ-
ent incident and scattered wave vectors. These correlations
provide insight into the scattering properties of the random
medium [3].

We demonstrate for the first time that third-order inten-
sity correlations provide the temporal response of a random
medium. A key point is that the extra degree of freedom in-
volved in third-order intensity correlations provides impor-
tant new information not present in second-order intensity
correlations. The correlations are performed over speckle
pattern intensities measured at different frequencies, which
not only gives the Fourier magnitude of the temporal re-
sponse (which can be obtained from second-order correla-
tions) but also the Fourier phase (which cannot be obtained
by second-order correlations). Then, through the applica-
tion of an inverse Fourier transform, the temporal response
can be obtained. In particular, we investigate an optical
multiple scattering random medium that is in the weak
scattering limit where the transport mean free path is much
greater than the wavelength, and in the diffusive regime
where the sample size is much greater than the transport
mean free path. This is an important class of scattering
media, with biological tissue in the near-IR being a prime
example.

Previous investigations into intensity correlations (see
Refs. [3–7] for a review) have focused on second-order in-
tensity correlations, highlighting the contribution of short-
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range, long-range, and infinite-range terms. The long- and
infinite-range correlations were found to be inversely pro-
portional to powers of the dimensionless conductance, g
[8]. For optical experiments involving a slab geometry,
g ¿ 1 is typical [9], thus making the contribution of the
long- and infinite-range correlations negligible. This is the
assumption we make for our experiments, which is sup-
ported by the data.

We show experimentally the remarkable result that the
temporal response of a random medium can be obtained
using third-order correlations of speckle patterns in the
frequency domain, for the speckle field described by cir-
cular complex Gaussian statistics. Third-order correlations
have been investigated in the past for several different ap-
plications. Gamo [10,11] proposed using third-order cor-
relations to extend the information obtainable from the
intensity interferometer of Hanbury Brown and Twiss [12]
for the analysis of optical spectrum profiles. Lohmann,
Weigelt, and Wirnitzer [13] applied a third-order corre-
lation in the speckle masking technique for astronomical
applications, which provided for stellar imaging. In a de-
terministic application, Blount and Klauder [14] proposed
a third-order correlation technique for determining the in-
tensity pulse shape from a short-pulse laser. They estab-
lished that third-order correlations are sufficient to fully
characterize the intensity pulse shape.

The temporal response we investigate is the ensemble
averaged normalized Green’s function (impulse response
function) for intensity of the scattering medium at some
specified source-to-detector separation, which we denote
by the real function p�t�. It can also be physically de-
scribed as the ensemble averaged photon time of flight
distribution through the random medium for an ultrashort
optical intensity pulse as the input. This distribution pro-
vides an important measure of scatter, and as a func-
tion of position provides data which can be used in, for
example, biological tissue imaging applications [15–17].
Direct measurement of p�t� typically requires a substan-
tial investment in instrumentation, due to the simultaneous
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requirements of high speed and high sensitivity for detect-
ing multiply scattered short optical pulses.

Genack [18] and Genack and Drake [19] have shown
that the correlation of two speckle fields at different fre-
quencies from a scattering medium is

�E�n0�E��n0 1 Dn�� � �I�P�Dn� , (1)

where P�Dn� is the Fourier transform of p�t�, E�n0� is
the speckle field complex amplitude, and the brackets �· · ·�
represent the ensemble average over all possible scatterer
configurations. The optical center frequency is given by
n0, and Dn represents a small shift frequency, typically in
the gigahertz range. The mean intensity, �I�, is assumed
independent of Dn. This result is valid under the assump-
tion of the field E�n0� being considered a random phasor
sum of many scattered fields, with the phase of the scat-
tered fields uniformly distributed over modulo 2p [18].
The field correlation expression of Eq. (1) is valid regard-
less of any long-range intensity correlation effects present
in the random medium [18,20].

Neglecting the long-range correlation effects implies
that all the scattered fields in the random phasor sum are
assumed statistically independent, and thus the resultant
speckle fields obey circular complex Gaussian statistics,
as described by Goodman [21]. Therefore, the Gaussian
moment theorem of Reed [22] can be used to evaluate
intensity correlation expressions. Defining a normalized
intensity Ĩ � �I 2 �I����I�, and using the expression of
Eq. (1), the second-order intensity correlation becomes

�Ĩ�n0�Ĩ�n0 1 Dn�� � jP�Dn�j2. (2)

The Fourier phase information is lost, and it is not possible
to reconstruct the temporal response from second-order
intensity correlations without a priori information about
the form of the temporal response. The measured data are
normally used to fit the temporal response derived from a
diffusion model [19,23], which we also investigated in a
previous study [24].

Third-order intensity correlations, unlike second-order
intensity correlations, contain information about the
Fourier phase. Consider the intensities at three different
frequencies given by I1 � I�n0�, I2 � I�n0 1 Dn1�, and
I3 � I�n0 1 Dn1 1 Dn2�, with Dn1, Dn2 ø n0. The
third-order correlation for the normalized intensities is
then [22]

�Ĩ1Ĩ2Ĩ3� � 2 Re�P�Dn1�P�Dn2�P��Dn1 1 Dn2�� , (3)

which is the important result from which information on
the Fourier phase can be obtained. Consider the third-order
correlation of p�t�, given by

g�3��t1, t2� �
Z `

2`

dt p�t�p�t 1 t1�p�t 1 t2� . (4)

The bispectrum [25] of p�t� is defined as the Fourier trans-
form of the third-order temporal correlation (with respect
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to t1 and t2) and is given by

G�3��Dn1, Dn2� � P�Dn1�P�Dn2�P��Dn1 1 Dn2� .
(5)

Hence, the third-order speckle intensity correlation of
Eq. (3) is twice the real part of the bispectrum of p�t�.

Denoting the phase of Eq. (5) as c�Dn1, Dn2� (the bi-
spectral phase) and the phase of P�Dn� as f�Dn� (the
Fourier phase), the bispectral phase and Fourier phase are
then related by

c�Dn1, Dn2� � f�Dn1� 1 f�Dn2� 2 f�Dn1 1 Dn2� .
(6)

The Fourier phase can be reconstructed from this expres-
sion when the bispectral phase is known over a range of
frequencies by discretizing Eq. (6) and solving the resul-
tant recursion expressions explicitly [26]. The bispectrum
is invariant to the linear Fourier phase [25], thus allowing
an arbitrary linear Fourier phase, which results in an arbi-
trary time delay in the reconstructed temporal response
p�t�.

Note that, while the Fourier phase can be obtained by
knowing the full bispectral phase, the third-order intensity
correlation in Eq. (3) yields only the cosine of the bispec-
tral phase. Thus, there is a sign ambiguity in the experi-
mentally determined bispectral phase, resulting in a time
reversal indeterminacy.

We used the experimental setup shown in Fig. 1 to
obtain data for the third-order speckle correlation mea-
surements. The output of a single mode, narrow linewidth
(nominally 5 MHz) external-cavity tunable laser diode
with a center wavelength of l � 850 nm was focused
onto the front face of the sample. The center frequency of
the laser could be scanned over a range of 60 GHz, thus
allowing Dn of Eq. (1) to vary over this range. A small
1 mm 3 0.8 mm area on the back face of the sample was
imaged onto a CCD camera using a lens and aperture. A
linear polarizer ensured that we imaged only the scattered
light which had the same linear polarization as the input
light. The scattering samples used were commercial white
acrylics (Cyro Industries, Acrylite FF) with the scattering
due to small TiO2 (of average diameter approximately
50 nm) particles within the acrylic background. We inves-
tigated two sample thicknesses of 6 and 12 mm. A typical
speckle image is shown in Fig. 2, along with insets show-
ing the speckle pattern decorrelate as Dn is increased.

Tunable
laser diode

Scattering

Polarizer

PolarizerL1 L2

Aperture
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camera
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FIG. 1. The experimental setup used for measuring the speckle
intensity patterns from a scattering medium. A series of inten-
sity speckle patterns were obtained as the laser diode center
frequency was scanned.
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FIG. 2. A typical measured speckle pattern. The insets show
an expanded image of the lower left sixteenth of the speckle
pattern, I�n0 1 Dn�, as Dn is varied. This shows the speckle
pattern slowly decorrelate as Dn is increased for the d � 6 mm
sample thickness.

We measured speckle patterns at 25 discrete center fre-
quencies of the laser diode in increments of 1 GHz. Based
on fixed frequency correlation measurements, we verified
that the scattering sample and laser diode were stable over
the duration of the experiment, and thus did not contribute
anomalous decorrelation due to drift.

We first calculated the probability density function for
intensity from the measured speckle data (first-order statis-
tics). The negative exponential behavior expected from a
speckle field with circular complex Gaussian statistics was
obtained. The second-order intensity correlation was also
measured and is shown in Fig. 3(a), and the rapid decay to-
wards zero indicates that it is free of any long-range corre-
lation effects. This gives evidence for a large g value [27],
which in turn supports our assumption that we have circu-
lar complex Gaussian statistics for the measured speckle
field [28], required for the validity of Eq. (3). Figure 3(b)
shows a plot of the third-order intensity correlation of
Eq. (3) from the measured speckle data. The third-order
correlation of Eq. (3) is symmetric with respect to inter-
changing Dn1 and Dn2, thus only half of the data presented
in Fig. 3(b) is unique. In fact, the general bispectrum ex-
pression for G�3��Dn1, Dn2� in Eq. (5) contains only one
octant of unique data [25]. The remaining data may be
averaged with the unique octant to reduce noise.
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FIG. 3. (a) The measured second-order intensity correlation
described by Eq. (2) for two slab thicknesses. The symbols are
the measured data, and the broken lines are the results from a
diffusion model for P�Dn�. These results show the absence of
any long-range correlation effects. (b) The measured third-order
intensity correlation described by Eq. (3) for the d � 6 mm slab
thickness.

In order to demonstrate reconstruction of the tempo-
ral response, we computed the Fourier magnitude from
Eq. (2) and the Fourier phase by solving Eq. (6), then we
performed an inverse fast Fourier transform to obtain the
temporal response. The results are shown in Fig. 4 and
compared with the temporal response of a diffusive me-
dium calculated using m0

s � 15 cm21 and ma � 0 cm21

for a uniform slab using image theory [29]. As can be
seen, the measured results are in good agreement with the
analytic diffusion model for a slab and, in particular, re-
produce very well the large change in p�t� as a function of
sample thickness. The arbitrary linear phase in the solu-
tion of Eq. (6) was chosen to overlap the reconstructed and
analytic temporal responses. The oscillations are due to
errors in the reconstructed Fourier magnitude and phase at
high frequencies, where the intensity correlations are small
and greatly affected by measurement noise. Nevertheless,
the results clearly show the significant accomplishment of
determining the temporal response of a random scatter-
ing medium using third-order frequency domain intensity
correlations.
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FIG. 4. Reconstructed temporal responses from the third-order
intensity correlation measurements. The solid line is the recon-
struction from measured data and the broken line is an analytic
result from a diffusion model. The temporal response for a
single slab of thickness 6 mm is given in (a), and for two identi-
cal slabs of 6 mm is given in (b), both showing good agreement
with a diffusion model.

In conclusion, we have demonstrated a new approach for
measuring the temporal response of a random scattering
medium up to an arbitrary time offset using third-order
intensity correlations in frequency. Our technique does not
require any a priori information regarding the form of the
temporal response and requires only that the speckle field
be described by circular complex Gaussian statistics.
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