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Nonadiabatic Calculations of the Dipole Moments of LiH and LiD
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We present very high-accuracy fully nonadiabatic calculated values for the dipole moments for the
ground states of LiH and LiD. These results were calculated via numerical differentiation of the energy
obtained at different electric field strengths. The values for the energy were obtained from variational
optimization with analytical gradients of the wave function expanded in a basis of explicitly correlated
floating s-type Gaussian functions. The values obtained for LiH and LiD, 2.3140 and 2.3088 a.u., are
nearly identical to those obtained by experiment.
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Very-high-accuracy dipole moments are some of the
most difficult molecular properties to calculate via the con-
ventional electronic structure methods in use today. This
difficulty is due to the Born-Oppenheimer (BO) approxi-
mation. The dipole moment is inherently a function of the
instantaneous correlated motions of the electrons and nu-
clei, and the artificial separation of these motions involved
in the BO approximation reduces the accuracy of the cal-
culated values for systems containing light nuclei. In BO
calculations, one determines the fictitious electronic dipole
and then uses the potential energy surface for the system
to calculate corrections due to nuclear motion (molecu-
lar vibration). It has been shown [1] that even relatively
simple, stable molecules can have non-negligible correc-
tions to purely electronic properties, suggesting that these
contributions should not be neglected.

There have been several recent attempts to find the nu-
clear corrections to the LiH dipole moment. Papadopoulos
et al. [2] used the perturbation theory to calculate the
corrections, and Tachikawa and Osamura [3] used the
dynamic extended molecular orbital method to try to cal-
culate the nonadiabatic result directly. Results for these
methods are reported in Table I. In all cases, the calcu-
lated values are outside of the range of the experimental
results [4,5], also reported in Table I.

In this work we present a method for calculating the
dipole moment directly using a variational non–Born-
Oppenheimer wave function expanded in a basis set of
floating, s-type explicitly correlated Gaussian (FSECG)
basis functions. This basis has been used for calculations
invoking the BO approximation (see [6] and the references
cited therein, also [7]). This work represents the first
application of this basis to non-BO calculations.

The FSECG basis is excellent for calculating non-
adiabatic molecular properties due to the flexibility of
the functions. The functional “centers” describing the
average nuclear and electronic positions can move in
three-dimensional space, allowing for the effect of a per-
turbation, such as an electric field, on the molecular wave
function to be accurately described. Basis functions used
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in previous non-BO calculations [8–11] may not have this
flexibility. The calculations of non-BO molecular proper-
ties in the FSECG basis may be the most comparable to
experiment, as the least amount of approximations have
to be made in the theory (i.e., no BO approximation, no
orbital approximation, etc.).

In the equations below, capital letters represent matrices,
lowercase letters represent vectors, and lowercase Greek
letters represent scalars. Any exceptions to this scheme
should be obvious and are pointed out.

A system of n 1 1 particles (six for LiH) can be trans-
formed to a system with three coordinates describing the
motion of the center of mass and 3n coordinates describing
the internal motion of a system of n pseudoparticles. The
positions in the laboratory coordinate frame of the origi-
nal six particles in LiH, i.e., Li nucleus, H nucleus, and
the four electrons, may be collected in a vector of length
18, made by stacking the 3-vectors, Ri containing the xyz
coordinates of the six particles:

R �

0
BBBB@

R1
R2
...

R6

1
CCCCA .

TABLE I. Experimental (expt.) and theoretical (calc.) dipole
moments (m) for LiH and LiD from the literature. All the
values are in atomic units. The values given in parentheses are
experimental uncertainty.

m

LiH
[2], calc. 2.317
[3], calc. 2.389
[4], expt. 2.3145
[5], expt. 2.314(0.001)
LiD
[3], calc. 2.392
[5], expt. 2.309(0.001)
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A transformation matrix, T ,

T �

0
BBBBBBBB@

M1

MT

M2

MT

M3

MT

M4

MT

M5

MT

M6

MT

21 1 0 0 0 0
21 0 1 0 0 0
21 0 0 1 0 0
21 0 0 0 1 0
21 0 0 0 0 1

1
CCCCCCCCA

≠ I3

(Mi is the mass of the ith particle and MT is the sum of
all these masses, ≠ denotes a Kronecker product, and I3 is
the 3 3 3 identity matrix) takes the R vector into a set of
coordinates in the internal coordinate frame for the center
of mass and the five pseudoparticles:

TR � r0 1 r ,

where r0 is a 3-vector of the coordinates of the center of
mass of the system stacked on top of a vector of length 15
containing the internal coordinates of the remaining five
particles:

r �

0
BBBB@

r1
r2
...

r5

1
CCCCA .

We will refer to the mass of the particle at the origin of
the internal coordinate system as M0 and to the reduced
masses of the n pseudoparticles as mi. The charges of the
original particles (Qi) map directly to the corresponding
pseudoparticles (qi21), with the charge of the particle at
the origin of the internal coordinate system mapping to a
central potential (Q1 ! q0).

We use the non-Born-Oppenheimer nonrelativistic inter-
nal Hamiltonian with the semiclassical particle/static elec-
tric field interaction term:

Ĥ � 2
1
2

√
5X
i

1
mi

=2
i 1

5X
ifij

1
M0

=0
i=j

!

1

5X
i�1

q0qi

ri
1

5X
i,j

qiqj

rij
2 m ? ´ , (1)

where m is the dipole moment vector and ´ is the electric
field vector.

The dipole interaction operator above references only
the internal coordinate system, or the pseudoparticles.
This is because in a neutral system the operator in the labo-
ratory coordinate system transforms to an operator for the
internal coordinate system plus a term for the center of
mass that is identically zero. The operator for LiH in the
laboratory coordinate frame can be written as

m ? ´ � �´6�0Q ≠ I3R ,

where ´6 is a vector of length 18 which is the normal ´

vector stacked on top of itself six times and Q is a 6 3 6
matrix with the charge Qi on the i, ith diagonal, and zeros
elsewhere. We can substitute T21�r0 1 r� for R in the
above operator and obtain

m ? ´ � �´6�0�QT21� ≠ I3�r0 1 r� .
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When this operator is expanded, we obtain a term for the
electric field interacting with the sum of the charges of all
the particles located at the center of mass:

´ ? r0

6X
i�1

Qii � ´ ? r0

5X
i�0

qi ,

which obviously sums to zero for a neutral system, indi-
cating that the center of mass of a neutral system does not
accelerate in an electric field. We also obtain terms for the
five pseudoparticles

m ? ´ �
5X

i�1

´ ? riqi ,

which is how we formally define the interaction term.
The FSECG basis function for n pseudoparticles is

gk�r� � exp�2�r 2 sk�0Ak ≠ I3�r 2 sk�� , (2)

where sk is a 3n-vector of “shifts” which are variational
parameters and Ak is a symmetric n 3 n matrix of varia-
tional exponential parameters.

The square integrability of the basis can be assured by
writing Ak in Cholesky factored form as

Ak � LkL0
k , (3)

where Lk is a lower triangular matrix whose elements can
vary in the range [2`, `]. The basis functions may then
be written as

gk�r� � exp�2�r 2 sk�0��LkL0
k� ≠ I3� �r 2 sk�� . (4)

For each subset of identical pseudoparticles i, we can
implement the desired permutational symmetry into the
basis functions by projection onto the irreducible repre-
sentation of the permutation group, Sni , for total spin Si

using the appropriate projection operator Êi . The total pro-
jection operator would then be a product:

Ê �
Y

i

Êi . (5)

For fermions, the projection operators are simply Young
operators, derived from the appropriate Young tableau, as
shown in the previous work [6].

Thus the final form of the basis function is

Êgk�r� �
Y

i

Êi exp�2�r 2 sk�0��LkL0
k� ≠ I3�

3 �r 2 sk�� , (6)

and the spin-free spatial wave function has the form

C �
mX

k�1

ckÊgk , (7)

where m is the size of the basis.
We calculate the dipole moment from total energy values

for the ground state of LiH/LiD in different electric field
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strengths. The energy values are obtained as variationally
optimized expectation values of the Hamiltonian operator
defined above:

E � min
�CjĤjC	
�C jC	

. (8)

The wave function (7) is optimized with respect to the pa-
rameters Lk , sk, and ck . This leads to 1

2n�n 1 1� 1 3n 1

1 variational parameters (31 for LiH) per basis function.
We begin with an initial guess for the wave function and
then use analytical gradients in a truncated Newton-type
algorithm to find the lowest value for the energy. The ith
component of the dipole moment is calculated numerically
from the definition:

mi �
≠E

≠´i
. (9)

The energy was calculated for each basis with three elec-
tric field strengths, ´z � 0, 20.0016, and 20.0032 a.u.,
and the energy curve was fitted with a second order poly-
nomial in ´i . m is then the first order coefficient of this
fit. In the fully non-BO approach, applying electric fields
in different directions is meaningless since the wave func-
tion has spherical symmetry and will have the same dipole
moment in any direction. Thus while we formally say that
we calculate the ith component of the dipole moment, we
really calculate only one value, the observable dipole mo-
ment. The integrals and gradients needed to solve (8) and
(9) are similar to those presented in [6], and will be pre-
sented explicitly in a future paper.

Optimization was carried out by supplying the function
and energy gradients to the optimization routine TN [12],
which was downloaded from the World Wide Web [13].
The program was coded in parallel using MPI, and was
executed on several different platforms: a Beowulf cluster
[14] of 8 dual processor PII and PIII machines with 400 and
500 MHz processors and 512 MB of RAM per machine;
an SGI Origin 2000 with 104 400 MHz R12K processors
and 48 GB of RAM; and a cluster of 16 Sun Ultra 10’s with
400 MHz processors and 256 MB of RAM per machine.
The program scales well with the number of processors in
the range of 1–32 processors, and comprehensive timing
results will be presented in a future paper.

The 244 term non-BO wave functions were variationally
optimized for LiH and LiD. The initial guess for the LiH
non-BO wave function was built by multiplying a 244 term
BO wave function expanded in a basis of explicitly corre-
lated functions by Gaussians for the H nucleus centered
at and around (in all three dimensions) a point separated
from the origin by the equilibrium distance of 3.015 bohrs
along the direction of the electric field. Thus the centers
corresponding to the hydrogen nucleus were scattered from
about 2.9 to about 3.1 bohrs. The lithium nucleus was, of
course, placed at the origin of the internal coordinate sys-
tem. The functional centers corresponding to the electrons
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were located primarily on the two nuclei, with two elec-
trons at the origin (about 0.0 6 0.001 bohrs in all three
directions) and two electrons near the H nucleus (about
3.05 6 0.06 bohrs) per basis set. This reflects the strong
ionic character in the lithium/hydrogen bond. The LiD
non-BO wave function was optimized starting from the
converged LiH wave function. Wave functions of various
smaller expansion lengths were optimized for LiH alone.
Table II shows the convergence properties of the dipole
moment for these basis sets. It can be seen that the cal-
culated value of the dipole converges and reaches a value
near that of experiment, 2.314 a.u., as larger basis sets are
used. The reported results for all functions were converged
to the point where the squared norm of the total gradient
was at least of the order 1028 and the energy changed at
most in the ninth decimal place. At this point the dipole
moment was converged to seven decimal places, which is
more than experimental accuracy. The total variational en-
ergy (also in Table II) for our 244 term wave function is
28.063 633 1 hartree. The most accurate non-BO energy
calculated before was that of Scheu et al. [11] equal to
28.066 155 7 hartree. Thus our energy value for this ba-
sis set is in error by only about 0.0025 hartree. Despite
this small error, we deem the obtained convergence of the
dipole moment value with the basis set size quite satisfac-
tory and it is highly unlikely that further enlargement of
the basis can change this value by an amount close to the
uncertainty level of the experiment where the LiH�LiD
dipole moments were measured.

The optimized basis functions show strong correlation
between the nuclei, the nuclei and the electrons, and
between the electrons. The centers describing the H�D
nucleus show a spread of values from about 2.9 bohrs to
3.1 bohrs, with the expectation value for the inter-nuclear
distance being 3.063 bohrs for LiH and 3.052 bohrs
for LiD. These values are in good agreement with the
value 3.061 bohrs for LiH obtained by Scheu et al. [11]
in their non-BO calculations, and are, as expected,
longer than the BO “equilibrium” value. Our values are
believed to be much more accurate than those of [3],

TABLE II. Values for energies, virial coefficients (h), and
dipole moments (m), for non-BO LiH�D for various expansion
lengths (m). All values are in atomic units.

m �H	 h m

LiH
24 28.042 329 4 1.000 000 2.4047
64 28.059 298 8 1.000 000 2.3394

104 28.061 926 7 1.000 000 2.3261
144 28.062 932 4 0.999 999 2.3149
244 28.063 633 1 0.999 999 2.3140
Experimental 2.314 6 0.001 [5]

LiD
244 28.065 033 1 1.000 000 2.3088
Experimental 2.309 6 0.001 [5]
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which are 3.119 937 and 3.104 819 bohrs for LiH and
LiD, respectively.

The value of the dipole moment of LiH obtained in this
work, 2.3140 a.u., is essentially identical to the experimen-
tal value, 2.314 6 0.001 [5]. Our calculations simulate
experiment more closely than any previous calculations.
The results also provide validation of the perturbation ap-
proach of [2], since the perturbation result, 2.317 a.u., is
very close to our value. At the same time, our results are
much more accurate than those of [3], the only other “di-
rect” calculation of the LiH dipole moment. The value of
the dipole moment of LiD, 2.3088, is also of good accu-
racy, compared to the experimental result, 2.309 6 0.001
[5]. Again, our result is much more accurate than that
of [3].

There are a few issues which must be discussed when
comparing the values obtained with our method to experi-
mental values. When an electric field is turned on, the
Hamiltonian no longer commutes with the Ĵ2 operator, but
does commute with the Ĵz operator. Thus our wave func-
tion must be an eigenfunction of Ĥ and Ĵz but not Ĵ2 (ex-
cept in the zero field case). The basis functions we use are
not rigorously eigenfunctions of Ĵz, but the optimization of
the wave function makes them very close to the state with
MJ � 0. The experimental results are obtained for the
ground electronic and vibrational states with J � 1. The
change in the dipole moment in going from the J � 0 state
that we simulated in the calculations to the J � 1 state
that was observed experimentally should be very small and
we do not expect it to affect the comparison presented in
this work.

We mentioned that our value for average position of the
H nucleus is less than 0.002 bohr larger than that obtained
by Scheu et al. Going to a larger basis set we would reach
a slightly lower lithium/hydrogen distance which in turn
would lower the dipole moment somewhat. Based on the
convergence of the dipole moment value with the basis
set size obtained in the calculations, we have a reason to
believe that this change should be quite small and again
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should not affect the reported values. Going to a larger
basis at this time would be quite expensive as we must
optimize wave functions in four field strengths per basis.

In conclusion, we presented the first direct nonadiabatic
variational calculations of dipole moments in a basis of
floating explicitly correlated Gaussians. The results ob-
tained are of experimental quality. The basis introduced
here for non-BO calculations may be an excellent one for
calculations of molecular properties in general.
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