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We investigate the properties of classical single flip dynamics in sets of two-dimensional random
rhombus tilings. Single flips are local moves involving three tiles which sample the tiling sets via
Monte Carlo Markov chains. We determine the ergodic times of these dynamical systems (at infinite
temperature): they grow with the system size NT like const. 3 N2

T lnNT ; these dynamics are rapidly
mixing. We use an inherent symmetry of tiling sets and a powerful tool from probability theory, the
coupling technique. We also point out the interesting occurrence of Gumbel distributions.
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After the discovery of quasicrystals [1], quasiperiodic
tilings [2] as well as their randomized counterpart, ran-
dom rhombus tilings [3], rapidly appeared to be suitable
paradigmatic models for quasicrystalline alloys [4]. Si-
multaneously, these systems also became an active topic
in discrete mathematics (see [5] or [6] for examples). Fig-
ure 1 displays a random tiling, which belongs to the class
of plane tilings with octagonal symmetry. Beyond this
case, plane tilings with larger symmetries including Pen-
rose tilings [2] and space tilings with icosahedral symme-
tries were proposed to model every kind of quasicrystal.
The present Letter is devoted to dynamical properties of
random rhombus tilings in terms of local dynamical rules,
the so-called phason flips, which consist of local rearrange-
ment of tiles (Fig. 1). These dynamics are of interest for
several reasons. On the one hand, it is more and more clear
that phason flips exist in real quasicrystals [7] and can be
modeled in a first approximation by tile flips; they are a
new source of atomic mobility, as compared to usual crys-
talline materials. In particular, they could carry their own
contribution to self-diffusion [8], even if the efficiency of
such processes remains controversial [9]. They are also
involved in some specific mechanical properties of qua-
sicrystals, such as plasticity via dislocation mobility [10].
Therefore a complete understanding of flip dynamics is es-
sential in quasicrystal physics. The present work is a first
step in this direction. On the other hand, a lot of numerical
work has been carried out to characterize statistical prop-
erties of tiling sets, a part of which was based on Monte
Carlo techniques which rely on a faithful sampling of tiling
sets (see [11,12]). So far, no systematic study of the relax-
ation times between two independent numerical measures
has been accomplished, whereas it is an essential ingre-
dient for a suitable control of error bars. However, there
exist exact results in the simplest case of random rhom-
bus tilings with hexagonal symmetry [13–15] and several
estimates of relaxation times in larger symmetries, either
numerical or in the approximate frame of Langevin dy-
namics [11,16].

Random rhombus tilings are made of rhombi of uni-
tary side length. They are classified according to their
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global symmetries [3]. The simplest class of hexagonal
tilings —made of 60± rhombi with three possible orienta-
tions —has been widely explored [13–15]. Tilings with
octagonal symmetry are made of six different tiles (char-
acterized by their shape and orientation): two squares and
four 45± rhombi (Fig. 1). Beyond these two cases, one can
define tilings with higher symmetries (e.g., Penrose tilings
[2]) or of higher dimensions [3]. For sake of technical
simplicity, we focus on tilings filling a centrally symmet-
ric polygon with integral side lengths (Fig. 1). We are in-
terested in the large size limit where the polygon becomes
large keeping a fixed shape. Such tilings can schemati-
cally be seen as frozen near their boundary, and strain-free
in their central region [17]. Dynamics of fixed boundary
tilings should be the manifestation of dynamics of their
strain-free center, thus relating both boundary conditions.
Here we suppose that all tilings have the same probability;
we work at infinite temperature.

The set of all the tilings of such a region together with
the flip dynamical rule define a discrete time Markov chain:
at each step, a vertex of the tiling is uniformly chosen at
random and if this vertex is surrounded by three tiles in
flippable configuration, then we flip it. Since sets of plane
rhombus tilings are connected via elementary flips [18],
this process can reach any tiling. It converges toward the
uniform equilibrium distribution, since it satisfies detailed
balance. All the difficulty is to characterize how many flips

FIG. 1. Examples of octagonal fixed boundary tiling and of
elementary flip. We have also displayed (in gray) the de Bruijn
lines of a family, among four families. They are lines of adjacent
tiles sharing an edge with a fixed orientation.
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one needs to get close to equilibrium. Generally speaking,
let us consider a Markov chain on a finite configuration
space L, which converges toward a stationary distribution
p. Let x0 be any initial configuration and P�x, t j x0, 0� be
the probability that the process has reached the configura-
tion x after t steps. Then

D�t,x0� � 1�2
X

x[L

jP�x, t j x0, 0� 2 p�x�j (1)

usually measures the distance between both distributions
[19]. Given ´ . 0 we define the ergodic or mixing time
t�´� so that whatever x0, after t�´� steps, one is sure to
stay within distance ´ of equilibrium:

t�´� � max
x0

min
t0

�t0�; t $ t0, D�t, x0� # ´� . (2)

In this Letter, we prove that for a tiling of NT tiles

t�´� # const 3 �NT �n lnNT ln�1�´� . (3)

More precisely, we establish, with the help of reduced nu-
merical work, that such a bound holds for n � 3, then we
argue that n � 2 should be the correct exponent. Whatever
this exponent, this proves that flip dynamics are rapidly
mixing at infinite temperature. As for the ln�NT � correc-
tion in (3), as discussed in [15], it is a feature of our choice
of distance D�t, x0�: a Euclidean norm would not display
this correction, but it is less natural in the context of mea-
sure of probability distributions convergence.

The coupling technique [19] has been successfully ap-
plied to estimate mixing times of several systems, such as
hexagonal tilings [13–15]. It relies on the surprising idea
that following the dynamics of couples of configurations
instead of a single one might provide the properties of the
original dynamics on single configurations. A coupling is a
Markov chain on L 3 L; couples of configurations are up-
dated simultaneously and are strongly correlated, but each
configuration, viewed in isolation, performs transitions of
the original Markov chain. Moreover, the coupled process
is designed so that when both configurations happen to be
identical, then they follow the same evolution and remain
identical forever. Then the central idea of the technique is
that the average time the two configurations need to cou-
ple (or to coalesce) provides a good upper bound on the
original mixing time t�´�: given an initial couple �x0, y0�
at time t � 0, define the coalescence time T �x0, y0� as the
minimum time that both configurations need to coalesce,
and the coupling time as

T � max
�x0,y0�[L3L

�T�x0, y0�� , (4)

where the last mean is taken over realizations of the cou-
pled Markov chain. The following theorem, central in the
coupling approach, provides an upper bound for the er-
godic times of the original (not coupled) process [19]:

t�´� # Te ln�1�´� 1 1 � Te ln�1�´� , (5)
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where e � exp�1�. If the configuration set L can be en-
dowed with a partial order relation ∫ with unique mini-
mum and maximum elements 0̂ and 1̂, the implementation
of the technique is highly facilitated, provided the cou-
pled dynamics is monotonous; i.e., if x�t� ∫ y�t�, then
x�t 1 1� ∫ y�t 1 1�: let �x0, y0� be any initial couple such
that 1̂ ∫ x0 ∫ y0 ∫ 0̂. After any number of steps, the four
configurations remain in this order. When the iterates of 0̂
and 1̂ have coalesced, the iterates of x0 and y0 also have.
Thus T�x0, y0� # T�0̂, 1̂� and T � �T�0̂, 1̂��.

A convenient representation of random rhombus tilings
was introduced by de Bruijn [20]. It consists of following
in tiling lines made of adjacent tiles sharing an edge with a
fixed orientation (Fig. 1). The set of lines associated with
an orientation is called a de Bruijn family. In an octago-
nal tiling, there are four families. When removing a fam-
ily from an octagonal tiling, one gets a hexagonal tiling.
Conversely, this enables one to propose a convenient con-
struction of tilings [12,18,21]: directed paths are chosen
on a hexagonal tiling, called the base tiling. They are rep-
resented by dark lines in Fig. 2. They go from left to right
without crossing (but they can have contacts). When they
are “opened” following a new edge orientation, they gener-
ate de Bruijn lines of the fourth family. In this one-to-one
representation, a tiling flip involving tiles of the fourth fam-
ily becomes a path flip: the path jumps from one side of a
tile to the opposite side.

Defining couplings on the whole octagonal tiling sets
seems to be an infeasible task. We instead use the
paths-on-tiling point of view to decompose the configu-
ration space into smaller subsets where couplings can be
defined: let Ja denote the set of tilings which have the
same base hexagonal tiling a, called “fibers” [18]. L is a
disjoint union of fibers. The only possible flips inside Ja

are those which involve the fourth de Bruijn family. Note
that we can construct four such fibrations, one for each
family.

Now, let M denote the symmetric transition matrix as-
sociated with the Markov chain on the whole set L: given
two configurations x and y, the matrix entry M�x, y� is
equal to the transition probability P�x, t 1 1 j y, t�. In the
same way, we define the symmetric transition matrices

FIG. 2. Example of two-line coupling in the directed path rep-
resentation. Dark lines represent a configuration and dotted lines
the second one. Both configurations form a couple.
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Mi associated with the Markov chains where only flips in-
volving the ith de Bruijn family are allowed. Since fibers
have been disconnected, Mi is block diagonal. The fol-
lowing result interconnects the four fibrations:

M � �M1 1 M2 1 M3 1 M4��3 2 Id�3 , (6)

where Id is the identity. Indeed, each coefficient M�x, y�
appears in all four matrices Mi but one, since the corre-
sponding flip involves three de Bruijn lines.

Now we implement the above coupling technique on
each fiber. To begin with, we suppose that there is only one
line in the flipping family, denoted by �. As in Ref. [13], in
order to have a monotonous coupling, we slightly modify
the Markov chain: at each step, we choose uniformly at
random an internal vertex of �, the nth one starting from
the left, and a number r [ �0, 1�. If this vertex is flippable
upward (downward) and r � 0 �r � 1�, then we flip it.
Note that this Markov chain has a time unit different from
the original one.

We now define the order relation �∫�: given two lines �1
and �2, �1 ∫ �2 if �1 is entirely above �2. The maximum
(minimum) configuration clearly lies on the top (bottom)
boundary of the hexagonal domain. If the two flips on
�1 and �2 occur with the same n and r and if �1 ∫ �2,
then their images satisfy the same relation. Indeed, as in
Ref. [13], thanks to the introduction of r, if a flip could
bring �1 below �2, then the same flip would also apply to
�2, thus preserving the order between lines: the coupling
is monotonous.

In the general case with p nonintersecting lines in each
configuration (Fig. 2), let us denote by �

� j�
i , j � 1, . . . , p,

the p lines of each configuration gi . Then g1 ∫ g2 if
for any j, �

� j�
1 ∫ �

� j�
2 . The configuration g is maximum

(minimum) when each of its lines is maximum (minimum).
At each step, the index j of the line to be flipped is chosen
between 1 and p, the same j for both gi.

To begin with, we numerically study the diagonal case,
where the four sides of the octagonal tilings are equal to k.
For a given base tiling Ta, we run a number m of couplings
until they coalesce, and then estimate the coupling time
T �Ta�. We then make a second average on M different
tilings, in order to get the time T averaged on tilings Ta.
We also keep track of the standard deviation DT . From
our numerical data (see Fig. 3), we draw the following
conclusions: DT�T decreases toward a constant �� 0.07�
as k ! `, which means that the average coupling time
T �Ta� goes on depending on the base tiling Ta at the
large size limit. However, most T�Ta� are of order T , and
the mixing times t�´� on most fibers are controlled by T .
Nevertheless, the effect of few “slower” fibers will deserve
a detailed discussion below. Moreover, the measures of
T are compatible with a k4 lnk behavior (Fig. 3, inset).
In particular, this fit with logarithmic corrections is much
better than a simple power-law fit. This result is consistent
030601-3
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FIG. 3. A distribution of coupling times T in the case of a
diagonal base tiling (k � 10) and p � 1, fitted by a Gumbel
distribution [continuous curve; see Eq. (9)]. Inset: in the di-
agonal case (k � p), numerical estimates of T in a function
of k4 lnk (circles), up to k � 15, and linear fit. Error bars are
smaller than the size of symbols. The slope is 25.51 6 0.05.

with known results in the case of hexagonal tilings [13,15],
where T also grows like k4 lnk.

We also have explored coupling times on fibers in non-
diagonal cases and our conclusions remain identical. As a
consequence, couplings in fibers behave like couplings in
hexagonal tiling problems, up to different numerical pref-
actors: the dynamics on each fiber is rapidly mixing.

Now we return to the dynamics on the whole set of
tilings. Examining Fig. 4, one remarks that two fibrations
are to a certain extent “transverse”: in octagonal tiling sets,
one can connect any two tilings using flips of only two
fibers [22]; if the dynamics is rapidly mixing in each fiber,
the combination of dynamics on two (and even four) fi-
brations will certainly also be rapidly mixing. We now
establish properly this point: it is common in the field of
Markov processes to relate rates of convergence to spec-
tra of transition matrices. Generally speaking, given a
transition matrix M, 1 is always the largest eigenvalue in
modulus, and the difference g�M� between 1 and the sec-
ond largest eigenvalue is called the first gap of M. Then

FIG. 4. The lattice of tilings filling an octagon of sides 1, 1, 1,
and 2. The edges represent possible flips. Two fibrations among
four are represented (continuous and dotted lines).
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t�´� � ln�1�´��g�M� for small ´ [14]. By simple argu-
ments from linear algebra and Euclidean geometry (since
matrices are symmetric), the following central gap relation
can be established [22], based upon (6) and the smallness
of the intersection of two fibers:

g�M� $ inf
i

���g�Mi���� . (7)

This result restores the symmetry lost in the fibration pro-
cess. It implies that the mixing time t�´� on L is smaller
than the mixing time on the slowest fibration derived from
(5). Hence t�´� is smaller than the mixing time on the
slowest fiber. We have seen that the average coupling
time T grows like k4 lnk in diagonal cases. Since the
number of tiles is NT � 6k2, T � k4N2

T ln�NT �, where
k4 � 1.189 6 0.003 in the original time unit. However,
the coupling time T depends on the base tiling Ta and the
distribution of times T in a given fibration have a certain
width around T (Fig. 3). And even if the typical values of
coupling times are of the order of magnitude of the pre-
vious average value, this does not exclude the existence
of rare slow fibers in the upper tails of these distributions.
However, we recall that coupling times T are maxima of
coalescence time distributions (4). Therefore the expected
shape of the distribution of T �Ta� ought to be sought in
the specific class of extreme-value distributions, namely
Gumbel distributions [23]: consider N independent identi-
cal random variables Ta, whose probability densities decay
rapidly at large T :

p�T� �
C1

Ta
exp�2C2Tb� , (8)

where C1, C2, b . 0. If Tmax � maxa Ta, then at large
N , the probability density of Tmax satisfies

p�u� � exp	2u 2 exp�2u�
 , (9)

where u � �Tmax 2 T0��dT is a suitably rescaled
variable.

Now, even if coalescence times are not strictly speaking
independent variables [22], our numerical distributions
appear to be well fitted by this kind of distribution (Fig. 3).
This result provides the large T behavior of coupling time
distributions: p�Tmax� � exp�2u� � exp�2Tmax�dT�,
and therefore an estimation of the largest coupling time.
Let us focus on diagonal cases: T0 as well as dT behave
like k4 lnk. But for a fibration i, there are Ni base tilings
Ta. Therefore if T � is the largest coupling time on all
tilings Ta, it is estimated by Ni exp�2T��dT� � 1. Now
Ni grows exponentially with the number of tiles [18]:
lnNi � C1k2. Thus

T� � C2k6 lnk � C3N3
T lnNT (10)

and t�´� # C4N3
T lnNT ln�1�´�. However, these extreme

values should not be relevant: because of the exponential
decay of p�u�, slow fibers are rare and can be bypassed via
rapid ones. More precisely, perturbation theory arguments
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suggest that rare slow fibers can be seen as a small pertur-
bation of an otherwise rapid transition matrix and have a
vanishing influence on its spectral gap [22]: they do not
significantly slow rapid dynamics and the typical coupling
time T drives the dynamics on fibers, leading to n � 2 in
(3) and const � ek4.

What does this analysis become in the case of larger
symmetry tilings or of higher dimensional tilings, such as
icosahedral ones? Plane rhombus tilings with 2D-fold
symmetry could be addressed by our approach without
significant technical complication, leading to laws similar
to (3), up to different prefactors, const [22]. As for higher
dimensional tilings, the fibration process remains valid, but
the connectivity of fibers is not established [18], making
impossible a naïve generalization of this approach.

I thank M. Latapy, K. Frahm, R. Mosseri, and D. S. Dean
for fruitful discussions.
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