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Experimental Violation of a Spin-1 Bell Inequality Using Maximally Entangled
Four-Photon States
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We demonstrate the experimental violation of a spin-1 Bell inequality. The spin-1 inequality is based
on the Clauser, Horne, Shimony, and Holt formalism. For entangled spin-1 particles, the maximum
quantum-mechanical prediction is 2.55 as opposed to a maximum of 2, predicted using local hidden
variables. We obtained an experimental value of 2.27 6 0.02 using the four-photon state generated by
pulsed, type-II, stimulated parametric down-conversion. This is a violation of the spin-1 Bell inequality
by more than 13 standard deviations.
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The assumption of local realism led Einstein, Podolsky,
and Rosen (EPR) to argue that quantum mechanics cannot
be a complete theory [1]. In 1951 Bohm discussed the
system of two spatially separated and entangled spin-1�2
particles in order to illustrate the essential features of the
EPR paradox [2]. The famous Bell inequalities [3], based
on entangled spin-1�2 particles, expresses the remarkable
fact that whatever additional variables are supplemented to
the quantum theory, the conflict between quantum theory
and local realism remains. Since the formulation of the
Bell inequalities and later of the Clauser, Horne, Shimony,
and Holt inequalities [4], several spin-1�2 experiments
based on polarization-entangled photons [5–9], time-
energy entangled photons [10,11], and trapped ions [12]
have been performed that verified the quantum-mechanical
predictions. The nonlocal features of these entangled
states have been employed in several applications in
the field of quantum information such as dense coding
[13], quantum cryptography [14,15], and quantum tele-
portation [16].

A natural extension of the research on entangled
particles is the study of entangled states of spin-s ob-
jects (s . 1�2�. Gisin and Peres showed that entangled
particles with arbitrarily large spins still violated a Bell
inequality [17]. This result implies that large quantum
numbers are no guarantee of classical behavior. The
inequalities that can be derived for entangled spin-s
particles are not unique. There are choices one can make
in the type of measurements performed on the particles
and in the values assigned to the measurement outcomes,
leading to different degrees of discrepancy between
quantum-mechanical and local-realistic predictions. The
question of which choices lead to a maximum discrepancy
is hard to answer and only recently progress has been
made for certain classes of measurements [18–20]. In this
Letter we will consider a spin-1 Bell inequality based on
Stern-Gerlach type of measurements and on a most simple
value assignment to the measurement outcomes. Under
these restrictions there remains a significant discrepancy
between the quantum-mechanical predictions, S � 2.55,
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and the local-realistic predictions S # 2, where S is
a function of the correlations between measurement
results on the two entangled and spatially separated
spin-1 particles.

Apart from its fundamental interest [17,18,21], en-
tangled states of spin-s objects are of clear interest for
applications in quantum information due to the higher
dimensional Hilbert space associated with these states
(e.g., quantum cryptography, dense coding, and bound
entanglement [22]). Recently, various alternatives for
addressing higher dimensional Hilbert spaces in quantum
information science have been explored, for example, by
using angular momentum of light [23,24] and multistate
BB84 protocols [25,26].

We present the first experimental demonstration of a
violation of a Bell inequality for entangled spin-1 objects.
We use the fact that the polarization-entangled four-
photon fields (two photons in each of two spatial modes)
of pulsed parametric down-conversion are formally
equivalent to two maximally entangled spin-1 particles
[27]. This is related to theoretical work by Drummond
[28] in which he describes cooperative emission of
wave packets containing n bosons and proves that
multiparticle states can violate the Bell inequalities.
The connection between states produced in parametric
down-conversion and the n-boson multiparticle states
has recently been discussed by Reid et al. [29].

A spin-1 particle has three distinct basis states (j21�, j0�,
and j1�) The spin-1 analog of Bohm’s entangled spin-1�2
particles is given by

jC1� �
1
p

3
�j1, 21� 2 j0, 0� 1 j21, 1�� . (1)

Consider the case that one spin-1 particle is sent to Al-
ice who performs a Stern-Gerlach type of measurement
(a projection measurement onto the basis states j21�, j0�,
and j1�) along the direction a. The other particle is sent to
Bob who performs the same type of measurement along the
direction b.
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The crux of Bell inequalities is that from a local-
realistic point of view the probability P for joint measure-
ment outcomes can be decoupled as

P�A, Bja, b, l� � P�Aja, l�P�Bjb, l� , (2)

where l accounts for all possible local hidden variables. A
and B refer to the measurement results (j1�, j0�, or j21�)
obtained by Alice and Bob using detection orientations
a and b, respectively. We define a local-realistic spin-1
measurement combination

EHV �a, b� �
Z

dl f�l�A�a, l�B�b,l� , (3)
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where

A�a, l� � P�1ja, l� 2 P�0ja, l� 1 P�21ja, l� , (4)

B�b, l� � P�1jb, l� 2 P�0jb, l� 1 P�21jb, l� , (5)

which implies jA�a,l�j # 1 and jB�b, l�j # 1. The
derivation of the spin-1 Bell inequality proceeds exactly
as the spin- 1�2 formalism [4,30], leading to

S � jE�a, b� 2 E�a,b 0� 1 E�a0,b� 1 E�a0,b0�j # 2 .
(6)

On the other hand, quantum mechanics predicts that the
measurements cannot be decoupled yielding
EQM�a, b� � P�1, 1ja, b� 2 P�1, 0ja, b� 1 P�1, 21ja, b� 2 P�0, 1ja, b� 1 P�0, 0ja,b�

2 P�0,21ja, b� 1 P�21, 1ja, b� 2 P�21, 0ja,b� 1 P�21, 21ja, b� . (7)
Using the Bell inequality in Eq. (6), a theoretical maxi-
mum violation of 2.55 is achieved, which is in agree-
ment with Gisin and Peres [17]. This prediction was
obtained using analyzer rotations of a � 0±, a0 � 22.5±,
b � 11.25±, and b0 � 33.75±. As mentioned in the in-
troduction, in arriving at the spin-1 Bell inequality we re-
stricted ourselves in the following way. First we consider
only Stern-Gerlach type of measurements. And second
we assigned the value 11 to both measurement results j1�
and j21� and the value 21 to measurement result j0�.
These choices do not maximally profit from the three-
dimensionality of spin-1 states, and for recent theoreti-
cal progress on optimizing Bell inequalities we refer to
Refs. [18–20].

The entangled quanta we use are the multiphoton modes
of a polarization-entangled light field [27] produced by
pulsed type-II parametric down-conversion. The first or-
der term of parametric down-conversion is 1�

p
2�jH, V� 2

jV , H��, which is used in spin-1�2 Bell inequality experi-
ments. However, we are interested in the second order
term of the down-converted field. By postselection we can
measure this term, which is given by

1
p

3
�j2H, 2V � 2 jHV , VH� 1 j2V , 2H�� , (8)

where, for example, the j2H, 2V � means that if Alice mea-
sures two horizontal photons, then Bob will measure two
vertical photons. As we have shown in [27] this four-
photon state is rotationally invariant. The photons sent
to Alice (and Bob) have three possible polarization mea-
surement outcomes with equal probabilities, namely j2H�,
jHV �, and j2V �, which we will define as the j1�, j0�, and
j21� state, respectively. This polarization measurement is
the analog of a Stern-Gerlach measurement for spin-1 par-
ticles. Thus, it is not the photons that are the spin-1 par-
ticles, but the two-photon polarization-entangled modes.

A schematic of our experimental setup is shown in
Fig. 1. The pump laser is a 120 fs pulsed, frequency
doubled, Ti:sapphire laser operating at 390 nm with an
80 MHz repetition rate. The pump enters a nonlinear
beta-barium borate (BBO) crystal cut for type-II phase
matching [7]. The down-converted field is then fed back
into the crystal along with the retroreflected pump beam.
The difference in the round-trip path length of the pump
beam and down-converted field is much smaller than the
coherence length of the 5 nm bandwidth frequency filtered
down-converted photons. The feedback loop for the en-
tangled fields contains a 2 mm BBO crystal rotated 90±

with respect to the optical axis of the down-conversion
crystal, which compensates for the temporal walk-off.
Such alignment yields very good spatial and temporal
overlap with which-pass interference visibilities of 98%.

The primary purpose for using the two-pass scheme
is to increase the count rates. For pulsed four-photon
down-conversion the count rates increased by a factor
of 16 for two passes as opposed to one pass, provided
that both down-conversion fields are exactly in phase and
completely indistinguishable. This leads to approximately
5 four-photon coincidence detections per second. To per-
form active stabilization of the phase we use the fact that
under the same conditions there is maximum constructive
interference for the much more intense two-photon state
(singlet spin- 1

2 ). Thus the two-photon coincidences can
then act as a precision, low-noise four-photon intensity
reference.

The analysis setup is shown in the dashed box in Fig. 1.
Each analyzer contains a l�2 wave plate, a polarizer, a
l�4 wave plate, a polarizing beam splitter (PBS), narrow
bandwidth filters (5 nm), and two single photon detectors.
The half-wave plates are used to set a and b on Alice’s
and Bob’s sides. The jHV � state is detected by having
the quarter wave plate oriented 0± with respect to the hori-
zontal polarization axis. The photons then pass through
the quarter wave plate unaltered and are split up at the
PBS. The j2H� state is measured by inserting a linear
polarizer oriented such that only horizontally polarized
030401-2
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FIG. 1. Experimental setup for generation and detection of
entangled spin-1 singlets. A type-II noncollinear parametric
down-conversion process creates four-photon states which are
amplified by the double pass configuration. The detection is
done at Alice’s and Bob’s sides by postselection as described in
the main text.

photons are transmitted. The quarter wave plate rotated by
45± followed by the PBS is an effective 50�50 beam split-
ter. Thus, the probability for measuring two photons (one
in each detector) on Alice’s or Bob’s side is reduced by
a factor of 2 due to the binomial measurement statistics.
In addition, inserting a polarizer introduces unavoidable
losses in the mode and further reduces the probability of
measurement compared to that of the jHV � state. It was ex-
perimentally determined that the two-photon measurement
probability of the j2H� state was 43.1% on Alice’s side
and 43.4% on Bob’s side compared to 50% for an ideal
50�50 beam splitter and lossless polarizer. Measuring the
j2V � is the same as the j2H� except that the polarizer is
rotated by 90±.

With the configuration just described, it is necessary
to measure 36 probabilities, nine from Eq. (7), for each
of the four analyzer settings in Eq. (6). The experimen-
tal results for one analyzer setting (namely, a � 216±,
b0 � 14±) are listed in Table I. The measurements were
taken by observing the raw fourfold coincidence counts
of all nine measurement possibilities. Each data point
is the average over twelve 60 sec intervals. The data
obtained using two polarizers were then multiplied by
a factor 1��0.431� �0.434�. The data obtained using a
polarizer on Alice’s (Bob’s) side were multiplied by a
factor of 1�0.431 �1�0.434�. These modified data are
shown under the “Mod.” column and the corresponding
probability under “Prob.” Similar tables have been mea-
sured for the other three analyzer orientations (using a0 �
4±, b � 6±). Combining all these data we arrive at a single
value, S � 2.27 6 0.02. This is the primary result of the
paper and is more than 13 standard deviations away from
the maximum value explainable by local realistic theories,
S � 2. In the following we take a look at the specific
noise in the system which will explain the difference be-
030401-3
TABLE I. Experimental results for one setting of the analyzers.

a � 216±, b0 � 14± �Counts�60 s�� Mod. Prob.

P�1, 1� 2.20 11.71 2.25%
P�1, 21� 18.04 96.05 18.46%
P�21, 1� 17.37 92.48 17.77%

P�21, 21� 1.78 9.48 1.82%
P�1, 0� 21.92 50.47 9.70%
P�0, 1� 33.67 77.86 14.96%

P�21, 0� 21.43 49.34 9.48%
P�0, 21� 28.74 66.46 12.77%
P�0, 0� 66.50 66.50 12.78%

Total · · · 520.35 100%

tween the ideal prediction �S � 2.55� and the measured
result �S � 2.27�.

In an ideal experiment, the only relevant experimental
setting to obtain a maximum violation is the differ-
ence in angles between the analyzer settings �Df �
b 2 a � a0 2 b � b0 2 a0�. In our experiment, we
observed two primary forms of noise. First, and most
important, due to limitations imposed by the broad band-
width of the 120 fs pump together with imperfections in
compensating spatial and temporal walk-off, the stringent
indistinguishability conditions for entanglement are not
perfectly fulfilled. This leads to two-photon and four-
photon contributions that are strongly correlated in the
H�V basis, corresponding to a � b � 0 (the preferred
axes of the down-conversion crystal), but uncorrelated
when a � b � 45±. The second, and much smaller
contribution which we can neglect in a first approxima-
tion, is due to six-photon noise giving rise to four-photon
detection events such as j2H, HV �. These considerations
lead to a simple one-parameter model for the noise of
our source

r � p�jcpure� �cpurej� 1
�1 2 p�

3
�2H, 2V � �2H, 2V j

1 jHV , VH� �HV , VHj 1 j2V , 2H� �2V , 2Hj� , (9)

where p is the probability of having the pure entangled
state. The equal weighting of all three terms of the noise
is expected from stimulated emission and has been experi-
mentally verified. The presence of the specific noise in
our setup will break the rotational symmetry. Hence, it is
advantageous to set our measurement axes �a, b, a0,b0�
such that they are symmetric around the 0± axis (the ori-
entation of minimum correlation noise). The maximum
violation for a given level of noise occurs at a reduced
angle difference Df compared with the ideal noiseless
case. The curves in Fig. 2 are calculated values of S as
a function of the angle difference Df for various levels
of noise. We determined p � 0.69 for our experiment by
fixing a � 22.5±while varying b from 0± to 45± and look-
ing at the coincidence counts of the j1, 1; 1, 1� term. For
this level of noise the maximum value of S equals 2.28 for
030401-3
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FIG. 2. The value of S is plotted as a function of the angle
difference between analyzer axes. The curves correspond to
different levels of noise. It was determined experimentally that
p � 0.69, where p is the probability of having the pure en-
tangled state. The experimental points are shown along with the
corresponding theoretical prediction.

Df � 10±. This is in good agreement with our measured
value of S � 2.27 6 0.02 at Df � 10±. In order to rule
out systematic errors we measured three additional points
Df along the curve of p � 0.69. Each of these also vio-
lates the Bell inequality as expected.

In summary, we have reported the experimental viola-
tion of a spin-1 Bell inequality. The experimentally deter-
mined value was 2.27 6 0.02 which is in agreement with
the value of 2.28 predicted for our system. In principle, the
method can be extended to higher spin numbers. These re-
sults open up the exploration of spin-1 (and higher) states
for optical quantum information.

We thank A. Ekert, C. Simon, and J. Rarity for help-
ful discussions. This work was supported by the EPSRC
GR/M88976, the U.K. Defence Evaluation and Research
Agency, and the European QuComm (ISI-1999-10033)
projects.

[1] A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777
(1935).

[2] D. Bohm, Quantum Theory (Prentice-Hall, Englewood
Cliffs, NJ, 1951), pp. 614– 619.

[3] J. S. Bell, Physics (Long Island City, N.Y.) 1, 195 (1965).
[4] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt,

Phys. Rev. Lett. 23, 880 (1969).
[5] J. F. Clauser and A. Shimony, Rep. Prog. Phys. 41, 1881

(1978).
[6] A. Aspect, P. Grangier, and G. Roger, Phys. Rev. Lett.

47, 460 (1981); Phys. Rev. Lett. 49, 91 (1982); A. Aspect,
J. Dalibard, and G. Roger, Phys. Rev. Lett. 49, 1804 (1982).
030401-4
[7] P. G. Kwiat et al., Phys. Rev. Lett. 75, 4337 (1995).
[8] G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and

A. Zeilinger, Phys. Rev. Lett. 81, 5039 (1998).
[9] P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H.

Eberhard, Phys. Rev. A 60, R773 (1999).
[10] P. G. Kwiat, A. M. Steinberg, and R. Y. Chiao, Phys. Rev.

A 47, R2472 (1993).
[11] W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, Phys. Rev.

Lett. 81, 3563 (1998).
[12] M. A. Rowe, D. Kielpinski, V. Meyer, C. A. Sackett, W. M.

Itano, C. Monroe, and D. J. Wineland, Nature (London)
409, 791 (2001).

[13] K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger,
Phys. Rev. Lett. 76, 4656 (1996).

[14] A. Ekert, Phys. Rev. Lett. 67, 661 (1991); A. Ekert, J. G.
Rarity, P. R. Tapster, and G. M. Palma, Phys. Rev. Lett. 69,
1293 (1992).

[15] D. S. Naik, C. G. Peterson, A. G. White, A. J. Berglund,
and P. G. Kwiat, Phys. Rev. Lett. 84, 4733 (2000);
T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and
A. Zeilinger, Phys. Rev. Lett. 84, 4729 (2000); W. Tittel,
J. Brendel, H. Zbinden, and N. Gisin, Phys. Rev. Lett. 84,
4737 (2000).

[16] C. H. Bennett et al., Phys. Rev. Lett. 70, 1895 (1993);
S. Popescu, LANL e-print quant-ph/9501020; D. Bouw-
meester et al., Nature (London) 390, 575 (1997); D. Boschi
et al., Phys. Rev. Lett. 80, 1121 (1998).

[17] N. Gisin and A. Peres, Phys. Lett. A 162, 15 (1992).
[18] D. Kaszlikowski, P. Gnacinski, M. Zukowski, W. Mik-

laszewski, and A. Zeilinger, Phys. Rev. Lett. 85, 4418
(2000).

[19] D. Kaszlikowski, L. C. Kwek, J.-L. Chen, M. Zukowski,
and C. H. Oh, quant-ph/0106010.

[20] D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popescu,
quant-ph/0106024.

[21] B. S. Cirel’son, Lett. Math. Phys. 4, 93 (1980); A. Garg
and N. D. Mermin, Phys. Rev. Lett. 49, 901 (1982);
M. Ardehali, Phys. Rev. D 44, 3336 (1991); K. Wod-
kiewicz, Acta Phys. Pol. A 86, 223 (1994); D. Home and
A. S. Majumdar, Phys. Rev. A 52, 4959 (1995).

[22] M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Rev.
Lett. 80, 5239 (1998).

[23] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P.
Woerdman, Phys. Rev. A 45, 8185 (1992).

[24] A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, Nature
(London) 412, 313 (2001).

[25] H. Bechmann-Pasquinucci and A. Peres, Phys. Rev. Lett.
85, 3313 (2000).

[26] M. Bourennane, A. Karlsson, and G. Björk, Phys. Rev. A
64, 012306 (2001).

[27] A. Lamas-Linares, J. C. Howell, and D. Bouwmeester, Na-
ture (London) 412, 887–890 (2001).

[28] P. D. Drummond, Phys. Rev. Lett. 50, 1407 (1983).
[29] M. D. Reid, W. J. Munro, and F. De Martini, quant-ph/

0104139.
[30] J. S. Bell, Speakable and Unspeakable in Quantum Me-

chanics (Cambridge University Press, Cambridge, U.K.,
1993).
030401-4


