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The silicon-based quantum computer proposal has been one of the actively pursued ideas during the
past three years. Here we calculate the donor electron exchange in silicon and germanium, and demon-
strate an atomic-scale challenge for quantum computing in Si (and Ge), as the six (four) conduction-band
minima in Si (Ge) lead to intervalley electronic interference, generating strong oscillations in the ex-
change splitting of two-donor two-electron states. Donor positioning with atomic-scale precision within
the unit cell thus becomes a decisive factor in determining the strength of the exchange coupling — a
fundamental ingredient for two-qubit operations in a silicon-based quantum computer.
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Following the seminal proposal [1] by Kane, there has
been a great deal of activity [2–4] in efforts to develop a
silicon-based quantum computer (QC) architecture. The
basic ideas of the Kane proposal are simple and attractive:
to use donor nuclear spins as quantum bits (qubits), and
to utilize the vast infrastructure and technology associated
with the Si industry to fabricate precisely controlled Si
nanostructures, where exchange effects between elec-
trons and nuclei in neighboring donor impurities (e.g.,
31P in Si) could serve as the two-qubit gates, similar
to the electron-spin-based QC proposal by Loss and
DiVincenzo [5]. The motivation for a Si quantum
computer is obvious: Once the basic one-qubit and
two-qubit operations have been demonstrated using donor
impurities in Si nanostructures, computer chip fabrication
technology associated with the existing and dominant Si
industry will easily enable the scale-up of information
processing involving a large number of donor nuclear spin
qubits. Indeed, one of the formidable stumbling blocks
in developing working quantum computer hardware has
been the scale-up problem, as the demonstrated qubits
in trapped ion and liquid state NMR techniques are not
readily scalable in any significant manner [6].

A great deal of experimental work is currently being
aimed at developing suitable qubits in Si nanostructures
with precisely introduced dopant impurities, using both
a “top-down” approach with ion implantation, and a
“bottom-up” approach with molecular beam epitaxy
(MBE) growth and scanning tunneling microscopy
[4]. In the Si QC model [1,2], donor electrons act as
shuttles between different nuclear spins. For two-qubit
operations, which are required for a universal QC, both
electron-electron exchange and electron-nucleus hyperfine
interaction need to be precisely controlled. These are
unquestionably formidable experimental problems. In the
original proposal, Kane used the Herring-Flicker exchange
formula [7] for two hydrogenic centers to obtain an order
of magnitude estimate of the electron exchange among
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donors in Si [1]. However, as he also pointed out, donor
exchange in Si is not hydrogenic.

In this Letter, we show that exchange effects in proposed
donor nuclei based Si QC architectures are actually very
subtle due to quantum interference effects inherent in the
complicated Si band structure. In particular, special care,
going far beyond what is being currently attempted in the
fabrication of Si QC, will be required in controlling the
surface gates crucial to QC operations. We also provide
results for Ge, which seems to have certain advantages
over Si as a candidate for dopant exchange based quantum
computation. Unfortunately, Ge is not such an attractive
practical alternative since there is no well-established Ge
technology to take advantage of.

The study of shallow impurities in Si and Ge is a quite
mature field [8,9]. However, complications arising from
the anisotropy of the electron effective mass and from in-
terference among the Bloch wave functions at the degen-
erate conduction-band edges were never fully explored in
detail. Both effects were discussed by Andres et al. [10]
statistically, in a study of magnetic susceptibility of the Si:P
system performed in the context of localization and mag-
netic phase transitions. The silicon conduction band has six
minima located along the �100� directions, at about 85%
between the center (G point) and the boundary (X points)
of the Brillouin zone (BZ): k6z � 0.85�0, 0, 62p�a�, and
the equivalent x, y directions. The interference between
these valleys causes fast oscillations (on the scale of the
interatomic spacing, quite different from the slowly vary-
ing exchange interaction in the spin-based quantum dot
QC model [5,11–13]) in the exchange interaction. Such
oscillations cannot be accounted for by a simple calcula-
tion using hydrogenic centers. Here we perform a Heitler-
London calculation of the exchange coupling [11] between
two substitutional donors in bulk Si, incorporating the ef-
fects of both the anisotropic effective mass and the val-
ley interference. Within the envelope function approach,
the ground single valence donor electron state (with A1
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symmetry) is written as a symmetric superposition of the
six conduction-band minima [8]:

c�r� �
1
p

6

6X
m

Fm�r�fm�r� , (1)

where fm�r� � um�r�eikm?r are Bloch wave functions.
Here km refer to the six conduction-band minima, and
Fm�r� are the corresponding envelope functions. We use
the Kohn-Luttinger variational form for these anisotropic
envelopes [8,9], e.g.,
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To determine the effective Bohr radii a and b, we have
used the most recently measured Si and Ge parameters [14]
(especially longitudinal and transverse effective masses) to
perform a variational calculation [9]. The calculated wave
function widths, as shown in Table I, are quite close to
those obtained over 40 years ago [8]. The large difference
in transverse mass has only a minimal effect on our results.

To calculate the exchange splitting between the ground
singlet and triplet states for an impurity pair in silicon, we
use an approximate form of the Heitler-London approach
[10], which leads to
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where R is the relative position of the impurity nuclei pair,
and
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The second summation in (4) comes from the reciprocal
lattice expansion of the periodic part of the Bloch func-
tion, um�r� �

P
K c

m
KeiK?r , and is identically 1 when R

is an fcc crystal lattice vector. Integrals in Eq. (3) with
rapidly oscillating integrands are neglected in Eq. (4). For

TABLE I. Experimental values for the lattice parameter, di-
electric constant, and electron effective masses (in units of the
free electron mass) for Si and Ge [14]. The last two columns
give the calculated values of the effective Bohr radii.

a (Å) e mk m� a (Å) b (Å)

Si 5.43 12.1 0.916 0.191 25.09 14.43
Ge 5.657 16 1.58 0.082 64.21 22.83
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m � n, we calculate the integrals in (5) by replacing the
denominator jr1 2 r2j by its value for the line along the
impurities [10], and assume jmn �

p
jmmjnn when m fi

n. All are excellent approximations for large separations
�jRj ¿ a, b ¿ a�.

The germanium conduction band has four minima
along the �111� directions, at the zone boundary L points.
Straightforward changes in (1) lead to expressions for the
exchange coupling in Ge similar to (4), with m and n

along the �111� directions. Because the conduction-band
minima are located at the zone boundary, the oscillation in
the exchange coupling should display a simpler behavior
than in Si when both donors are on the same fcc sublattice,
thus making Ge an intriguing candidate for the purpose
of quantum computing.

We calculate the exchange energy for a pair of donors
at RA and RB as a function of their relative position
R � RA 2 RB from Eq. (4), taking the expression in the
square bracket equal to unity. This means that the results
are appropriate for any lattice vector R, while for gen-
eral interdonor distances our values should be taken as
an estimate. For definiteness, we consider R along high-
symmetry directions in the crystal lattice. Figure 1 shows
the calculated values of J�R� for donors in Si and Ge with
R along the [100], [110], and [111] directions [frames (a),
(b), and (c), respectively]. The solid lines give the results
for Si, and exhibit the expected decay of J with increasing
jRj due to the decrease of the donor wave function overlap.
Other general features of Si and Ge exchange are clearly
illustrated in this figure, namely, the oscillatory behavior
of J superimposed on its overall decay with distance, and
the strong anisotropy of J�R� which is apparent by com-
paring different frames. Both features are consequences of
the host material band structure and have not been consid-
ered in detail in previous studies [15], either for simplicity
[1,3] or because such effects are averaged out for a random
donor distribution [10]. The filled circles in Fig. 1 indicate
the accessible values of J�R� when the impurity pair in Si
is located at lattice sites along the considered directions.
Since for Si the conduction-band minima correspond to
points inside the BZ, the period of oscillation in J and the
lattice periodicity are not commensurate. We have also in-
vestigated the effect of small perturbations in the atomic
positions: The open squares give the resulting exchange
values when one of the impurities is slightly displaced to
off-lattice positions. The set of squares around each circle
in Fig. 1 corresponds to displacements along different di-
rections, with the distance from the original lattice position
arbitrarily taken as d � 0.235 Å (i.e., 10% of the nearest-
neighbor distance in Si). The squares follow to a very
good approximation the behavior of the calculated J�R�,
with R along the unperturbed crystal direction, regardless
of the direction of d. The upper bound of DJ�J calcu-
lated from the small-displacement data is about 2.5% to
5% along the [100] direction, which means that the requi-
site control over donor positioning should be much better
027903-2
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than 10% of the nearest-neighbor distance, i.e., better than
0.235 Å, a rather difficult task.

The corresponding results for donor pairs in Ge are
given by the dashed lines, diamonds, and crosses in
Fig. 1. In these calculations we have also assumed nearly
free electrons, which means c

m
0 ¿ c

m
Kfi0. The main

qualitative difference between the calculated exchange
coupling for donors in Ge and Si arises from the different
locations of the conduction-band minima in the BZ.
Since for Ge the minima occur at the zone boundary L
points, the oscillations in J�R� are commensurate with
the lattice periodicity. For donors at lattice sites along the
[100] direction, the accessible values of J�R� correspond
exactly to successive local maxima of Eq. (3). As a
consequence, off-lattice displacements from the original
lattice sites by 10% of the nearest-neighbor distance in
germanium �d � 0.245 Å� have a negligible effect on the
exchange coupling for donors along this direction. Quan-
titatively, the longer range for the interactions in Ge as
compared to Si is due to the larger values of the effective
Bohr radii for Ge (see Table I).

Our results indicate that a 31P donor array along the
[100] direction in either of the host materials meets the
requirements for quantum computer implementation. The
exchange energy for two 31P substitutional impurities 100
to 200 Å apart along this direction ranges between a few

FIG. 1 (color). Calculated exchange coupling between two
phosphorus donors in Si (solid lines) and Ge (dashed lines) along
high-symmetry directions for the diamond structure (see inset
of Fig. 2). Values appropriate for impurities at substitutional
sites are given by the circles (Si) and diamonds (Ge). Off-lattice
displacements by 10% of the nearest-neighbor distance lead
to the perturbed values indicated by the squares (Si) and
crosses (Ge).
027903-3
tenths of one meV to one meV, corresponding to less than
100 ps to 100 ns gate operation time. These values are
robust with respect to small off-lattice displacements.

Displacements of the 31P atoms into neighboring lattice
sites, which are bound to occur in the fabrication process
due to either uncontrolled implantation or surface diffusion
during MBE growth, also deserve careful theoretical inves-
tigation. In Fig. 2 we present the calculated J�R� for a spe-
cific relative position R0 along the [100] direction (black
symbols), as well as for values of R � R0 1 D, with D
ranging over the 4 nearest neighbors, 12 second nearest
neighbors, and 6 third nearest neighbors in the diamond
structure (see inset of Fig. 2). These displacements cause
a relatively small change in the interdonor distance (see
horizontal scale in the figure). For third neighbors (blue
symbols) the trends in Fig. 1 are reasonably preserved.
Surprisingly, most first and second neighbor displacements
essentially destroy the exchange coupling. This effect is
entirely due to the cos�km ? R� factors in Eq. (4), coming
from the plane-wave part of the Bloch functions, and is not
directly related to the numerical values or approximations
involved in obtaining the jmn coefficients. Therefore we
do not attempt to refine the envelope function calculation
at this stage, e.g., by including central cell corrections [8]
and intervalley coupling [16]. The results obtained here are

FIG. 2 (color). Variations in the exchange coupling between
two phosphorus donors in Si (solid symbols) and Ge (open sym-
bols). Lattice displacements into one of the first (red), second
(green), or third (blue) neighboring positions follow the color
code represented in the inset, which depicts a diamond structure
with colored bonds. The numbers in the parentheses next to the
data points are their degeneracies, respectively. For clarity, not
all bonds connecting neighbors are shown in the inset. Black
circles refer to the reference positions R0, with the two donors
exactly along the 100 direction. The red squares give the ex-
change constant when one of the donors is displaced into one
of its nearest-neighbor sites, while green diamonds represent the
second nearest-neighbor values and blue circles the third near-
est-neighbor values. The points connected by a line refer to
pairs along the [100] direction, displaced by 6a with respect to
the reference position, and may be easily identified in Fig. 1(a).
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inconsistent with the commonly accepted idea that, when
the Bohr radii of the envelope functions are much bigger
than the lattice parameter, the substitutional positioning of
the impurity atoms is not of much importance in determin-
ing the exchange coupling.

In a Si QC architecture, there are surface gates (so-called
A and J gates) that are used to control single- and two-qubit
operations [1]. By adjusting the gate potential(s), one
can shift the center of a donor electron wave function,
thus quickly traversing the fast oscillating terrain in the
exchange coupling. The results obtained in this paper
also indicate that donor electron exchange depends very
sensitively on the applied gate potential(s). Furthermore,
whether the electrons are trapped by donor ionic potentials
or by the applied gate potentials, the fast oscillation in ex-
change will persist as long as the electrons are in the bulk
of a silicon crystal. For a two-qubit gate of a QC, it is the
time integral of the exchange constant J that determines
the gating time [5]. The implication of the oscillatory ex-
change is that the A and J gate voltages corresponding to
the peak exchange coupling have to be well controlled, op-
timally close to a local maximum where the exchange is
least sensitive to the gate voltage. Since the oscillatory
exchange period is close to lattice spacing, the position-
ing of the donor electrons by the A and J surface gates
must be controlled at least to that precision. Furthermore,
if one intends to achieve adiabaticity by increasing the
switch-on time of the gate, so that

R
J dt � �2n 1 1�ph̄

with n ¿ 1 [11], the error in J due to gate inaccuracies
would accumulate in the integral. It is thus crucial to pre-
cisely control the surface gates in order to minimize the
possible errors.

Placing the donors and therefore their electrons in the
middle of a symmetric Si quantum well will help reduce
the fast phase oscillations because only two of the six bulk
Si conduction band valleys would contribute to the donor
electron ground state [2], suppressing the magnitude of
the interference effect. In a symmetric quantum well, the
splitting between the ground state and the next excited
state (in analogy to the A1 and T donor electron states in
bulk) is much smaller than in the bulk (crudely estimated to
be about 3 meV from symmetry arguments, in contrast to
nearly 12 meV in bulk Si; the smaller splitting implies that
the adiabatic condition is somewhat harder to satisfy in the
quantum well). Strains, electric fields, and/or asymmetry
in the quantum well might help eliminate the remaining
valley degeneracy [3] so that all the fast oscillating factors
in the exchange constant J may be removed, thus lead-
ing to a slowly varying J and a much easier control of
the exchange gate. However, strains themselves are hardly
controllable, while asymmetry in a quantum well may in-
troduce additional complications that lead to decoherence.
Further investigations of these factors are still ongoing and
the results will be reported elsewhere [17].

As we have demonstrated above, moving one of the
donors to its second nearest-neighbor position causes
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strong suppression in exchange coupling between the
two donor electrons. This cancellation of exchange due
to valley interference might be useful for isolating the
neighboring qubits. In a Si QC, for most of the time
the qubits should not “talk” to each other. Unwanted
interaction would lead to leak of information and decoher-
ence. Therefore, the positions with vanishing exchange
interaction might provide a quieter environment compared
to an arbitrary pair of positions for qubits.
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