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Competition of Periodic and Homogeneous Modes in Extended Dynamical Systems
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Despite their simple structure, spatially homogeneous modes can participate directly in pattern-
formation processes. This is demonstrated by new experimental and theoretical results for thermo- and
electroconvection in planar nematic liquid crystals, where two distinct homogeneous modes, twist and
splay distortions of the director field, emerge. Their nonlinear excitation is due to certain spontaneous
symmetry-breaking bifurcations.
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The transition to spatiotemporal complexity in driven
systems is typically traced back to the spatial and tempo-
ral periodicity of the linear exponentially growing modes,
their nonlinear couplings and saturation [1]. Recently also
the importance of spatially homogeneous modes with zero
wave vector for the pattern selection in chemical systems
has been emphasized [2]. Another example is homoge-
neous shear flow in inclined layer convection [3]. It is un-
derstandable that homogeneous modes have attracted less
attention so far. They are more difficult to identify directly
by standard optical methods. Moreover, they are often as-
sociated with spontaneous symmetry-breaking bifurcations
in the nonlinear regime, which can be easily overlooked in
the theoretical analysis as well.

In order to study the possible scenarios associated with
multiple homogeneous modes, thermally or electrically
driven convection in nematic liquid crystals (nematics)
provides interesting model systems [4,5]. The mean orien-
tation of the elongated molecules of nematics is described
by their director field n̂. The coupling of director distor-
tions to the other fields (e.g., velocity, temperature, charge
density) allows for new efficient convection mechanisms
typical for intrinsically anisotropic fluids [4–6]. Another
advantage of nematics is that n̂ can be monitored optically
and oriented through electromagnetic fields. Such effects
are, for instance, exploited in liquid crystal displays.

Since the first systematic investigations of convection
in nematics in the 1970s, the use of a homogeneous mag-
netic field as a secondary control parameter has contributed
considerably to the analysis of the underlying mechanisms
[6–9]. In the case of planar nematic convection where
n̂ � x̂ at the cell boundaries, a planar magnetic field H �
Hx̂ tends to hinder director rotations off the x̂ direction on
the linear level and the convection threshold does increase
rapidly with H. Our new results yet prove that two ho-
mogeneous modes, twist and splay (Fig. 1), surprisingly
with a director component perpendicular to H, control the
secondary bifurcation sequences in the nonlinear regime
above onset. Before only the importance of a homoge-
neous twist has been realized [10,11], which is, however,
-1 0031-9007�02�88(2)�024503(4)$20.00
more difficult to visualize in the experiments than the new
splay mode in Figs. 2 and 3. The theoretical analysis of the
complicated interplay between the twist and splay modes
is condensed into Fig. 4.

We focus mainly on nematic thermoconvection which
is obtained when the temperature difference DT across a
nematic layer between two horizontal plates at z � 6d�2
exceeds a critical value DTc [5,12,13]. In addition, we
present preliminary results in nematic electroconvection
where an ac voltage V of frequency f drives the convec-
tion instabilities [5,14,15]. In both systems normal rolls,
characterized by a director field of the form

ny � 0, nz � A cos�q ? r� cos�pz�d� (1)

to leading order, with a wave vector q � qcx̂ parallel to the
anchoring direction, are preferred at onset. As usual, the
magnetic field is scaled in units of a characteristic Fréeder-
icksz field HF [7,12]. In the regime h � H�HF & 3, when
e � DT�DTc�h� 2 1 (or e � V 2�V 2

c 2 1 in electro-
convection, respectively) is slowly increased, the normal
rolls bifurcate at e � eZZ to oblique rolls, where q ? ŷ
becomes nonvanishing. At higher e � eBV, a secondary
oblique-roll mode of wave vector k becomes excited,
leading to the bimodal varicose structure [13,15]. This
sequence has been interpreted by an extended weakly
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FIG. 1. Schematic convection cell with the periodic director
field n̂ of a normal roll mode (1) (solid arrows). To avoid
viscous torques created by the velocity field (circular stream
lines), the director has a tendency to align along ŷ , thus creating
a homogeneous twist (2). The dashed arrows show the new
homogeneous splay mode (3) superimposed on n̂. The director
rotation towards ẑ presents a different option to avoid viscous
torques in the roll-edges regions.
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FIG. 2. Top: Ordinary light image of splay rolls in thermo-
convection of the nematic 5CB in a cell of thickness 1.52 mm
at h � 3, e � 0.14. Bottom: corresponding intensity line
profiles I�x0� along the wave-vector direction (coordinate x0).
The periodic roll-diameter modulation (marked by bars) cannot
be explained by the theoretical expression for standard rolls
deduced from (1), I�x0� ~ n2

z �x0� � A2 cos2qx0. The more
general form n2

z �x0� � �A cosqx0 1 c�2, corresponding to the
superposition of rolls (1) and splay (3), leads instead to an
accurate reproduction of the experimental profiles.

nonlinear analysis [14], which shows that the x-y homo-
geneous twist mode

ny � w cos�pz�d�, nz � 0 , (2)

excited by nonlinear effects for e . eZZ, drives the zigzag
and bimodal bifurcations.

Our experiments at larger h, however, reveal new pat-
terns, with no change of periodicity of the rolls, but instead
with an increasing asymmetry of the roll diameters. In or-
dinary light, where the intensity variations are proportional
to the vertical average n2

z of n2
z across the layer [16], every
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FIG. 3. (a): Picture of a splay-bimodal pattern in thermocon-
vection of the nematic MBBA in a cell of thickness 1.3 mm
at h � 3.3, e � 0.22. With the use of extraordinary light the
spatial variations of nz are mapped into edge and center-lines
caustics [16]. The thin (thick) arrows on the pattern indicate the
direct (reciprocal) lattice base vectors. (b): Splay-bimodal in
electroconvection of the nematic phase 5 in a cell of thickness
50 mm at h � 5.1, f � 80 Hz, e � 0.58. The double arrows
at the bottom indicate on both pictures the modulation of the
roll diameters.
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second roll becomes larger and brighter. From Fig. 2 it
can be deduced that a homogeneous splay mode

ny � 0, nz � c cos�pz�d� , (3)

is superimposed onto the periodic nz variations (1), which
leads to the notion of splay rolls. The excitation of ho-
mogeneous splay at large h is further confirmed by the
observation of a new type of bimodal varicose structure
(Fig. 3a). In contrast to the classical bimodal structure
[13], the varicose pinchings are more pronounced at every
second roll due to the enhanced splay. A quite accurate
reconstruction of such a pattern is indeed obtained by us-
ing a combination nz � �A cos�q ? r� 1 B cos�k ? r� 1

c� cos�pz�d� of the two corresponding roll modes (1) plus
the splay mode (3). This new pattern is generic in nematic
convection since it also appears in electroconvection in the
presence of a planar magnetic field (Fig. 3b).

The various higher-order bifurcations and in particular
a subcritical regime for h . ht � 4 [12] cannot be cap-
tured by weakly nonlinear methods. Thus a fully nonlinear
analysis of the nematohydrodynamic equations based on
Galerkin methods [17] has been developed. Our results
for thermoconvection are summarized in the stability dia-
gram Fig. 4. The diagram for electroconvection looks
similar according to some first calculations. At e � eT,
we do find a bifurcation to twist normal rolls, which have
been called “abnormal rolls” in electroconvection [10]. At
larger h, above the codimension-2 point C1, the bifurcation
to splay normal rolls at eS is found. Between the codimen-
sion-2 points C1 and C4 splay rolls bifurcate to splay-twist
normal rolls at eST until the twist suppresses the splay at
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FIG. 4. Theoretical stability diagram for the thermoconvec-
tion of the nematic 5CB and rolls with a critical wave vector
q � qc�h�x̂. The bifurcation lines above onset (e � 0) indicate
zigzag (ZZ), twist (T), splay (S), and bimodal varicose (BV)
bifurcations, together with their possible combinations, and a
Hopf bifurcation close to the tricritical point ht (see text). The
codimension-2 points Ci where several bifurcation lines meet
are marked.
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eT between C1 and C3. At large e bimodal instabilities
are predicted, either leading to classical bimodal varicose
at eBV or to splay bimodal varicose at eSBV. Note that be-
tween C3 and C4, the splay bimodal contains four active
modes: the homogeneous splay mode and twist mode and
the two periodic roll modes. At large h, we find stable
subcritical splay roll solutions even slightly below the tri-
critical point ht . The line eSBV merges with ht, but the
bifurcation becomes oscillatory.

Some basic features of the new splay rolls can be re-
vealed by a generic description of the coupled periodic
and homogeneous modes. Following the general scheme
in [14] the resulting coupled-amplitude equations for the
roll (A) and splay (c) amplitudes,

t≠tA � eA 2 gA3 2 bAc2,

≠tc � 2sSc 1 GSA2c ,
(4)

are systematically derived from the nematohydrody-
namic equations. The linear damping factor sS � k11�
g1�p�d�2�1 1 h2� does increase with h (k11 is the
splay elastic constant, g1 a characteristic viscosity of
the nematic), but can be compensated by the positive
term ~GSA2, leading to a continuous splay bifurcation at
eS � gsS�GS, slightly lower than the Galerkin value. The
positive sign of the nonlinear coefficient GS is imposed
by a combination of magnetic and viscous effects. The
first one, which is associated with a term 1h2n3

z in the nz

equation, originates from the magnetic quadrupolar nature
of nematics, which aligned along ẑ would feel no mag-
netic torque. The second one is active for arbitrary h in
thermally and electrically driven convection. It describes
the general tendency of the director to avoid director-
transverse velocity gradients: with the splay mode the
director escapes vertically the velocity gradients due to
the roll modulation Fig. 1.

From a quantitative point of view, there is a good agree-
ment between theory and experiments in thermoconvection
in the low-h regime and in particular for the bimodal bi-
furcations [18]. The measurements shown in Figs. 2 and
3a at larger h are also consistent with the theory. The roll-
diameter modulation and the results for eSBV and the sec-
ondary wave vector k at the bifurcations to splay bimodals
match within 15% the theoretical predictions. The Hopf
bifurcation at large h, probably connected with the os-
cillating bimodal instability appearing at rather large e in
the limit h ! 0 [13,14], may explain the peculiar Nusselt
number oscillations reported in [7] very close to onset in
the subcritical regime [19].

In this work, new bifurcations have been identified in
nematic convection and explained by the competition of
homogeneous with periodic modes. Figure 4 proves that
the balance achieved in the nonlinear regime between ef-
ficient convection, minimizing torques on the director and
viscosity dissipation can be subtle. We point out that the
orientational role of the magnetic field in the linear regime,
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which is well known in the context of the simple Fréeder-
icksz transitions, cannot be extrapolated in the nonlinear
regime: in our system the planar magnetic field does
contribute to the excitation of a homogeneous splay. Of
course, homogeneous splay can be already excited in the
linear regime by a vertical magnetic field or a pretilt at the
boundary; splay bimodals have in fact been observed in
such cases [8] as well, though not explained at this time.
To describe the slow spatial variations of homogeneous and
periodic modes, Eqs. (4) have now to be generalized by in-
cluding spatial derivatives. Thus contact will be made to
the description of quasihomogeneous modes, which have
recently attracted some interest [20]. Moreover, a theoreti-
cal description of walls between the equivalent 6c states
observed in some experiments or of other defect structures
will become possible [21].

In conclusion, our results show that the interaction be-
tween multiple homogeneous modes and periodic modes
can lead to quite complicated scenarios in the nonlinear
regime (Fig. 4). They should motivate further analyses of
this competition in other extended dynamical systems.

We are grateful to L. Kramer and S. Kai for valuable
discussions.
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