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Geometry of Reaction Interfaces in Chaotic Flows
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The analysis of transport-controlled reactions in chaotic flows provides a physical frame to extend the
concept of the intermaterial contact area (ICA)— introduced in the purely kinematic case —to mixing
systems with diffusion, where the ICA is identified through the reaction interface between segregated
reactants. We show that the dynamics of the ICA undergoes a crossover from kinematics-dominated
exponential growth to a persistent oscillatory regime resulting from the intertwined action of advection
and diffusion. The scaling of the crossover length versus the Peclet number is analyzed.
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The response of a physical process occurring in a stirred
fluid system depends significantly upon the interaction be-
tween diffusion and convective stirring. Well-known ex-
amples include heat and mass transport with or without
chemical reactions [1,2] as well as the growth of mag-
netic-field seeds in chaotic flows (the so-called fast dynamo
problem) [3]. Several different approaches have been used
to describe and quantify the interplay between stirring ef-
fects induced by a chaotic flow and diffusion: statistical
analysis of mean square displacement [4]; methods based
on Melnikov theorem [5] and shadowing techniques [6];
time splitting between diffusion and convection (pulsed
systems) [3,7]; analysis of diffusing-reacting systems for
which the nonlocal effects of diffusion can be neglected
[8]; analysis of premixed lamellar systems under diffu-
sion [9,10]; numerical simulations of advecting-diffusing-
reacting systems [11].

There is, however, one important feature that has not
been addressed: namely, the question of how the geome-
try of partially mixed structures —with specific reference
to the dynamics of interfaces undergoing chaotic advec-
tion —is modified by molecular diffusion. Besides, the
knowledge of pattern dynamics, under stirring, diffusion,
and, possibly, chemical reactions, provides important phe-
nomenological information useful to build up models of
industrial reacting flows [1], dispersion of solid and liq-
uid pollutants, growth of microorganisms in flowing media
[12], etc.

The natural physical framework to approach the dynam-
ics of segregation patterns is given by transport-controlled
[13] bimolecular chemical reactions A 1 B ! P, on the
assumption of equal molecular diffusivity and stoichiomet-
ric loading of the reactants [10]. Beyond its practical rele-
vance (mixing-controlled reactions), the assumption of
transport-controlled kinetics is crucial in that it implies
that the species A and B remain segregated at all times, as
they cannot coexist at one and the same spatial location.
The ICA can therefore be identified as the reaction
interface between the two segregated reactants, and the
system considered provides a simple physical framework
for a well-posed comparison between the evolution of
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partially mixed structures with and without molecular
diffusion [14].

This Letter analyzes the geometry and dynamics of re-
action interfaces and of the corresponding mixing patterns
for transport-controlled reactions in chaotic flows in the
presence of diffusion.

In quantitative terms, the evolution of the system is de-
scribed by the single partial differential equation [9,10]:

≠f

≠t
1 v�x, t� ? =f �

1
Pe

Df , (1)

defined on a differentiable manifold M representing the
mixing space, where f � CA 2 CB, Pe is the Peclet
number, Pe � VL�D , V , L being characteristic velocity
and length of the system. While two-dimensional time-
periodic velocity fields v�x, t� are considered throughout
this Letter, all of the results can be straightforwardly
extended to three-dimensional systems.

The stoichiometric loading of reactants implies
mA�0� �

R
M CA�x, 0� dx � mB�0� �

R
M CB�x, 0� dx,

where Ca�x, 0� is the initial concentration of the species
a, and x � �x, y�.

At all positive times, the solution of Eq. (1) is smooth,
and the boundary between the segregated reactants (i.e.,
the reaction interface) coincides with zero level set
g�t� � �x [ Mjf�x, t� � �f�x, t�� �

R
M f�x, 0� dx�,

where �f�x, t�� � 0 by virtue of the initial condition.
Although motivated by the physical system described

above, the level set g�t� can be regarded in a more general
sense as a well-defined feature associated with the partial
differential equation [Eq. (1)] whenever the initial distri-
bution f�x, 0� is nonconstant.

As a model system, we consider a two-dimensional
time-periodic flow (sine flow [15]) obtained by blink-
ing every T�2 time units the two steady fields v1 �
�sin�2py�, 0	 and v2 � �0, sin�2px�	 defined on the two-
dimensional torus (i.e., on the unit square M � I 2

equipped with periodic boundary conditions). The initial
condition is set to f�x, 0� � 2 2 4h�x 2 1�2�, where
h�x� is the unit step function, corresponding to a unit
initial mass of the reactants, each occupying half of the
© 2002 The American Physical Society 024501-1
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unit square I 2. The kinematic interface in the limit
Pe � ` is obtained by advecting the segments x � 0 and
x � 1�2 (which constitute the intermaterial boundary at
t � 0� through the ordinary differential equation (ODE)
�x � v�x, t�.

Expansion of the function f in Fourier series,
f�x, t� �

P
`
h,k�2` fh,k�t� exp�2pi�hx 1 ky�	, and sub-

stitution into Eq. (1) yields the following infinite-
dimensional linear tridiagonal system of ODEs for the
coefficients during the first half-period T�2 (motion along
the x axis):

�fh,k � 2
4p2

Pe
�h2 1 k2�fh,k 2 ph�fh,k21 2 fh,k11� .

(2)

An analogous equation is obtained for the other half-period
by interchanging h and k.

Equation (2) was solved numerically for 102 # Pe #
105 with h, k [ 2N , . . . , N , where N [the number of
modes is �2N 1 1�2] varied from 80 (for the lowest Pe)
to 300 (for Pe � 105). The number of modes was chosen
so as to ensure N independence of the solution in the norm
L2. In order to determine both the spatial patterns and the
overall interface length, the values of f on a square mesh
of 512 3 512 nodes were computed by means of a stan-
dard fast Fourier transform algorithm. The nodal values
of function f were linearly interpolated and the reaction
interface g�t� was determined as the intersection of the
globally continuous piecewise triangular surface with the
plane f � 0. The mesh utilized proved fine enough to re-
solve the details of mixing patterns for all of the finite Pe
values considered.

Interface tracking for the Pe � ` case was ac-
complished by advecting interface points through the
first-order ODE �x � v�x, t�.

Figures 1(a)–1(d) show the segregation patterns (white
and gray) and the reaction interface g (black line) for a
mixing protocol specified by a period T � 1.6 at Pe �
104 at times nT , with n � 1, 2, 3, and 5, respectively. In
the same figure, the structure of the kinematic interface
�Pe � `� is shown at the end of the first (I) and second
(II) periods. It is worth noting that the value T � 1.6 of
the switching period yields a nearly globally chaotic pro-
tocol. In this situation, the stroboscopic evolution of the
kinematic interface undergoes invariant space-filling ex-
ponential growth, as can be observed from (I) and (II)
in Fig. 1. Snapshots of the kinematic interface at later
times (not shown here for the sake of brevity) yield what is
essentially the same structure supplemented with increas-
ingly fine detail.

Comparison of Fig. 1(a) and (I) shows that at the end of
the first period the reaction interface is indistinguishable
from the corresponding kinematic �Pe � `� interface. The
situation changes drastically at the end of the second pe-
riod, as can be observed by comparing Fig. 1(b) and (II).
Diffusion swiftly merged and erased many of the fine scale
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FIG. 1. Comparison of the kinematic �Pe � `� and reaction
interfaces at Pe � 104 for the globally chaotic protocol T � 1.6.
(a)–(d) Mixing patterns (white and gray) and reaction interface
(black line) at times T , 2T , 3T , and 5T in sine flow for T � 1.6
(globally chaotic case). (I), (II) Kinematic interface at the end
of the first (I) and second (II) periods.

structures, causing an enormous reduction of the overall in-
terface length. The patterns corresponding to the third and
the fifth period [Figs. 1(c) and 1(d)] show the attainment
of a type of persistent oscillatory behavior in the geometry
of the structures. These oscillatory patterns can be seen
qualitatively as the resultant of a dynamical equilibrium
between two competing mechanisms, namely, the convec-
tion-driven generation of the interface and the merging of
neighboring structures due to molecular diffusion [16].

An important question arises as to the role of chaos in
determining the dynamics of reaction interfaces. In or-
der to explore this point, we analyzed the case of a stir-
ring protocol that possesses large regions of regular motion
(islands), as can be obtained, for example, by setting the
periodicity of the sine flow system to the value T � 0.4.
Figure 2-(I) and 2-(II) show the snapshots of the kinematic
�Pe � `� interface at times nT , with n � 20 and n � 30,
respectively. In this case, the material interface undergoes
altogether different stretching processes inside and outside
the chaotic region, the overall rate of growth being expo-
nential in the chaotic region (X-shaped area in the figures)
and linear within the islands. The corresponding reaction
interfaces at Pe � 104 [Figs. 2(a) and 2(b)] coincide with
the kinematic template within the islands, while the fine
024501-2
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FIG. 2. Comparison of the kinematic �Pe � `� and reaction
interfaces at Pe � 104 for a mixing protocol with large
quasiperiodic islands �T � 0.4�. (a)–(d) Mixing patterns (white
and gray) and reaction interface (black line) at times 20T , 30T ,
50T , and 60T . (I), (II) Kinematic interface at time 20T (I)
and 30T (II).

structure of the diffusionless limit inside the chaotic re-
gion is evidently blurred into one large lamella at the times
considered. Snapshots of the reactive patterns at later times
[n � 50, Fig. 2(c); and n � 60, Fig. 2(d)] again point to
a persistent oscillatory evolution in the mixing patterns.
All of these qualitative observations find a simple and
rigorous explanation in the analysis of Eq. (1) regarded as
a dynamical system in a functional space [17].

An overall quantitative description of interface dynam-
ics can be obtained by tracking the length of the reaction
interface L�t� vs time. We consider a wide range of
Pe � 102 4 105 for the two mixing protocols (T � 0.4
and T � 1.6). Figure 3(a) shows the results for the nearly
globally chaotic case T � 1.6, at Pe � 103, 104, and
105 (continuous lines), together with the growth of the
kinematic interface (line with points). For each of the Pe
considered, we can unambiguously identify a crossover
time t� � t��Pe� (and a corresponding breakup length
L�) beyond which the dynamics of reaction interfaces
departs irreversibly from exponential kinematic growth
and settles into a bounded oscillating pattern around a
characteristic average length depending on Pe and on the
mixing protocol.

The case T � 0.4 [Fig. 3(b)] displays more complex
features. Here it is possible to identify two separate
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FIG. 3. Length of the reaction interface L�t� vs time for sine
flow at T � 1.6 (a) and T � 0.4 (b). Continuous lines: Pe �
103; 104; 105. Dotted line: kinematic interface.

crossover times t�
C and t�

P corresponding, respectively,
to the breakup of the kinematic interface inside and
outside the chaotic region. For t�

C , t , tP , the interface
undergoes an oscillating restructuring driven by repeated
merging events inside the chaotic region, whereas the
overall trend of monotonic growth is driven by the fraction
of interface that falls within the islands. If we target the
Pe � 104 case (second curve from below), the breakup
time t�

P proves to be in the order of t�
P � 11.6, which

corresponds to approximately n � 28 periods, while
t�
C � 2.1. Comparison of the kinematic and reaction

interfaces at n � 30 �t � 12� [Fig. 1(b) and Fig. 1-(II)]
supports the observation that significant merging of
structures within the islands begins only at times larger
than t�

P � 11.6. The small high-frequency fluctuations
(in the time scale of a half-period) clearly detectable
for T � 0.4, and especially at high Peclet numbers, are
not spurious consequences of the numerics, but rather of
merging and restructuring events between parts of the
interface that lie “at the border” between the quasiperiodic
and chaotic regions.
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FIG. 4. Scaling of breakup length L��t�
C � vs Pe for sine flow.

�D�: T � 1.6; �±�: T � 0.4. The continuous line represents
the prediction of L� � L��Pe� derived from scaling arguments
(see main text) for the case T � 1.6. The boxes ��� represent
L��t�

P � at T � 0.4.

It is worth pointing out that the breakup time t� does not
correspond to the extinction of the reaction. Indeed, tak-
ing the T � 1.6 case as an example, mA�t�� � 0.40, 0.56,
and 0.66 for Pe � 103, 104, and 105, respectively. As re-
gards the kinetics of reactant consumption, this means that
for high Peclet numbers the major contribution to reaction
occurs in the mixed regime �t . t�� rather than in the kine-
matic-controlled regime �t , t��. Moreover, in the mixed
regime, the partially mixed structures attain an almost con-
stant average thickness approximately equal to 1�L�.

Figure 4 shows the scaling of the breakup length L�

vs the Peclet number for both T � 0.4 and T � 1.6. In
the first case, both L�t�

C � and L�t�
P � are shown. In all of

the cases examined, L� 
 Pen over three decades, where
n � 1�8 for L�t�

C �, n � 1�3 for L�t�
P �, and n � 0.4 for

L� at T � 1.6. Focusing attention on the nearly globally
chaotic case, the behavior of L� vs Pe can be explained by
means of elementary scaling arguments. The first breakup
of the reaction interface, which coincides with the kine-
matic interface up to that time, occurs when the diffusional
length scale ldiff � �2t�Pe�1�2 is of the same order of mag-
nitude as the average lamellar thickness 1�Lkin�t�, i.e.,
ldiff�t�� � aL21

kin�t��, the prefactor a 
 O�1� accounting
for the spatial heterogeneity of the short-time Lyapunov
exponents, which determines the fine structure of the lo-
cal striation thickness and can be estimated from a single
simulation experiment at low Pe � 102. The length of the
kinematic interface is given by Lkin�t� � L0 exp�htopt�T�,
L0 � 2, where htop is the topological entropy of the sys-
tem estimated from its Poincaré map (htop � 2.33 for T �
1.6). t� is therefore implicitly expressed by the equation
Pe � 8a2t� exp�2ut��T �, with a � 0.62 for T � 1.6.
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The geometric approach undertaken in this Letter can
be also exploited to predict overall reactant decay through
one-dimensional models [17].
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