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We present a novel method for simultaneously phase matching several nonlinear optical interactions
within a single crystal. Quasiperiodic modulation of the nonlinear coefficient enables one to achieve
high frequency mixing efficiencies for interactions with arbitrary wave vector differences. Doubling
of two different frequencies as well as direct frequency tripling is experimentally demonstrated. The
temperature- and wavelength-dependent properties of these interactions are explored. We discover that
periodic approximation to the quasiperiodic structure shifts the phase-matched wavelengths.
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Phase matching between interacting waves in a non-
linear optical interaction is an essential condition for
achieving high frequency conversion efficiency. Although
naturally a wave vector difference, Dk, is caused by the
dispersion of the nonlinear material, it can be compensated
by several methods (see Table I). Traditionally, this was
achieved using the birefringence properties of the nonlin-
ear material [1,2]. In 1962, Armstrong et al. [3] proposed
the scheme of quasiphase matching (QPM), by applying a
periodic variation to the sign of the second order nonlinear
coefficient. A modulation with a period L can phase
match interactions with a wave vector difference that
equals integral multiples of 2p�L over the transparency
range of the nonlinear crystal. In ferroelectric crystals
QPM can be realized by electric field poling (for a review,
see Ref. [6]). However, periodic modulation of the
nonlinear coefficient cannot phase match simultaneously
two processes, unless their wave vector differences ratio
is an integral number. Therefore, it usually fails to give
a solution when phase matching is required for several
nonlinear interactions simultaneously. One example is
third-harmonic generation (THG), which requires phase
matching both for the second-harmonic generation (SHG)
process �v ! 2v� and the sum frequency generation
(SFG) process of the fundamental frequency and its second
harmonic �v 1 2v ! 3v�. This process can be realized
in a two-step cascaded process [7], but the reduced
interaction length for each stage leads to lower efficiency.
In addition, the cascaded process operates only in one
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direction of propagation (SHG must come before SFG).
Other examples, where simultaneous phase matching is
required, include multiple-wavelength SHG (v1 ! 2v1

and v2 ! 2v2) and frequency quadrupling �v ! 4v�.
In order to simultaneously phase match two interac-

tions, aperiodic modulation of the nonlinear coefficient is
required. In previous works, a Fibonacci-based modula-
tion has been used [4]. The Fibonacci-based structure con-
sists of two incommensurate building blocks, L and S, that
are superimposed according to the Fibonacci sequence [8].
Unlike the periodic case, in which one index is required
for the notation of the reciprocal vectors, here two inte-
gers are required, and the reciprocal vectors are given by
kmn � 2p�m 1 nt��D, where t � �1 1

p
5 ��2 is the

golden ratio and D � tL 1 S is the average lattice pa-
rameter. Therefore, this structure can provide more re-
ciprocal vectors and consequently enables one to phase
match more interactions simultaneously. However, the ex-
pression for kmn implies that the wave vector differences
of the interactions cannot be arbitrarily chosen because t

is a specific number. In this sense, the Fibonacci-based
structures still provide a somewhat limited solution. In-
deed, recently, two extensions were made to these struc-
tures [9,10], yet both of them require some specific relation
between the wave vector differences of the phase-matched
interactions. Therefore, in many cases the Fibonacci-based
solutions may not be applicable.

In this Letter, we experimentally demonstrate a novel
method for simultaneously phase matching any two
TABLE I. Phase-matching methods and the corresponding conditions on the wave vector difference.

Phase-matching method Condition on the wave vector difference Ref.

Birefringent phase matching Dk � 0 [1,2]
Periodic quasiphase matching

Dk �
2pm

L

[3]

Fibonacci-based quasiperiodic structure
Dk �

2p�m 1 nt�
D

; t �
1 1

p
5

2
[4]

Generalized quasiperiodic structure
Dk �

2p�m 1 nt0�
D

; t0 arbitrary [5, this work]
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arbitrarily chosen nonlinear interactions, by using a gen-
eralized quasiperiodic structure (GQPS). The order of
the building blocks in the GQPS is no longer dictated by
the Fibonacci series. The reciprocal vectors are given by
kmn � 2p�m 1 nt0��D0, where D0 � t0L 1 S is the av-
erage lattice parameter and t0 is an arbitrary number [5].
Hence, the GQPS’s can efficiently phase match multiple
nonlinear interactions with an arbitrary ratio between their
wave vector differences. In addition to having efficien-
cies similar to cascaded processes, the GQPS-based mix-
ers have the same efficiency in both directions of light
propagation.

Two GQPS’s were designed: one for generating the
second harmonic of two frequencies (1510 ! 755 nm and
1064.4 ! 532.2 nm), and the other for directly generating
the third harmonic �1544 ! 514.7 nm� via simultaneous
SHG and SFG processes. The desired multiple interactions
determine the wave vector differences that need to be com-
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pensated by the GQPS, and these set the order of appear-
ance of the two building blocks as well as the average
lattice parameter [5]. Three degrees of freedom remain
to be determined via an optimization process: L and the
duty cycles of L and S, dL and dS, respectively. The
duty cycle is defined as the ratio of the upward subdo-
main to the whole block. For the optimization process, we
use the Fourier transform relation between the nonlinear
coefficient function, d�z�, and the conversion efficiency
function [11,12]. Let us define a normalized structure
function, g�z� � d�z��dij (where dij is the nonlinear co-
efficient tensor element used in the specific interaction),
and denote its Fourier transform as a function of the wave
vector difference as G�Dk�. Assuming negligible pump
depletion and weak focusing, the conversion efficiency is
proportional to jG�Dk�j2 � �deff�Dk��dij�2l2, where l is
the crystal length. Therefore, the effective nonlinear co-
efficient is given by deff�Dk� � dij jG�Dk�j�l, where the
Fourier transform of the GQPS is
G�Dk� �
X
�zL�

exp� jzLDk� ?

∑
dLL sinc

µ
dLLDk

2

∂
exp

µ
2j

dLLDk

2

∂

2 �1 2 dL�L sinc

µ
�1 2 dL�LDk

2

∂
exp

µ
j

�1 2 dL�LDk
2

∂∏
1

X
�zS�

exp� jzSDk�

3

∑
dS�D0 2 t0L� sinc

µ
dS�D0 2 t0L�Dk

2

∂
exp

µ
2j

dS�D0 2 t0L�Dk
2

∂
2 �1 2 dS� �D0 2 t0L�

3 sinc

µ
�1 2 dS� �D0 2 t0L�Dk

2

∂
exp

µ
j

�1 2 dS� �D0 2 t0L�Dk
2

∂∏
. (1)
The goal of the optimization is to find the values of L,
dL, and dS that maximize deff for the desired interactions,
and this was achieved by searching numerically over dis-
crete lists of values. The range of possible values for the
duty cycles was between 0.05 and 0.95 (with 0.05 jumps)
and L varied between 4 and 12 mm (with 1 mm jumps).
In addition, we required that no subdomains be smaller
than 2 mm, which is currently the resolution limit of the
electric field poling technique in KTiOPO4 (KTP). Ac-
cording to the results of this optimization we designed
the GQPS’s for this experiment. For the dual-wavelength
SHG, the parameters of the GQPS are L � 8 mm (hence
S � 10.6 mm), dL � 0.7, dS � 0.2, and the order of the
first 13 elements is LSLLSLSLLSLSL . . . . For the fre-
quency tripler, the parameters are L � 8.5 mm (hence
S � 9.5 mm), dL � 0.35, dS � 0.75, and the order is
LSLLSLLSLLSLS . . . . The total length of each GQPS
is �10 mm, and both of them were fabricated side by side
on the same KTP crystal by the low-temperature electric
field poling technique [13].

The optical performance of the GQPS’s was charac-
terized using three different lasers: a Nd:YAG laser at
1064.4 nm and two tunable diode lasers near 1.55 mm
and 780 nm. All lasers lased in a continuous-wave
single longitudinal and spatial �TEM00� mode and were
linearly polarized in the extraordinary direction of the
crystal. The mixing processes occur through the largest
nonlinear coefficient in KTP, d33 � 14.9 pm�V. With
the GQPS designed for multiple-peak SHG, we measured
maximal normalized internal conversion efficiencies of
25%��W ? cm� and 0.073%��W ? cm� for the SHG of
1064.4 and 1509.9 nm, at crystal temperatures of 34 ±C
and 25 ±C, respectively (Fresnel reflections were taken
into account). The measured SHG powers as a function
of the crystal temperature are shown in Fig. 1. Note that
the ratio between the wave vector differences for these
two interactions, �2.58, cannot be provided either by a
periodic modulation or by the Fibonacci-based modulation
of the nonlinear coefficient.

The Nd:YAG laser at 1064.4 nm and the external
cavity laser at 1509.9 nm had power levels of 123 mW
and 4.78 mW, respectively. Both of the laser beams
had slightly elliptic profiles with average beam radii
of �20 mm, which is close to the optimal value [14].
Our numerical simulations predict effective nonlinear
coefficients of 0.293d33 and 0.322d33 for the frequency
doubling processes of 1064.4 and 1509.9 nm, respectively,
in this GQPS. Taking into account Miller’s delta, the theo-
retical internal efficiencies should be 0.28%��W ? cm�
and 0.103%��W ? cm�, respectively [14]. Considering the
ellipticity of the beams and possible imperfections of the
023903-2



VOLUME 88, NUMBER 2 P H Y S I C A L R E V I E W L E T T E R S 14 JANUARY 2002
FIG. 1. Normalized SHG powers as a function of crystal tem-
perature measured with a GQPS in KTP designed for dual-
wavelength SHG; (a) SHG of 1064.4 nm; (b) SHG of 1514 nm.

quasiperiodically poled crystal, the measured efficiencies
are in good agreement with the theoretically calculated
efficiencies.

With the GQPS designed for frequency tripling, we
measured separate efficiencies of 0.049%��W ? cm� and
2.15%��W ? cm� for the SHG and SFG processes, respec-
tively. The ratio between the wave vector differences for
the SHG and SFG interactions, �2.74, could not be pro-
vided either by a periodic or by the Fibonacci-based modu-
lation. The measured SHG power as a function of the
fundamental wavelength is shown in Fig. 2.

For the case of SFG of the fundamental wave with its
second harmonic, the focusing function becomes identical
to that of SHG [14,15]. Our numerical simulations predict
effective nonlinear coefficients of 0.236d33 and 0.426d33

for the SHG and SFG processes, respectively. Taking into
account Miller’s delta, the theoretical efficiencies should
be 0.051%��W ? cm� and 2.47%��W ? cm�, respectively.
It can be seen that both of the measured efficiencies are in
very good agreement with the theoretical ones.

In order to observe direct frequency tripling, we cou-
pled the light from the tunable laser near 1.55 mm into a
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FIG. 2. Normalized SHG (circles) and THG (squares) powers
as a function of pump wavelength measured with a GQPS in
KTP designed for frequency tripling.

fiber and passed it through a 30-dBm erbium-doped fiber
amplifier. Because of the coupling to fibers, the focusing
conditions in the THG measurements were slightly differ-
ent than those in the SHG and SFG measurements. With
�1 W of laser power at 1544.14 nm incident on the crys-
tal at room temperature, and a beam radius of �30 mm
in the middle of the crystal, a maximum THG power of
50.5 nW is measured. This indicates a THG efficiency
of 3 3 1025%��W2 ? cm2�. The measured THG power
as a function of the fundamental wavelength is shown in
Fig. 2. The THG efficiency for a crystal with length l is
given by hTHG � P3v��P3

vl2� � �hSHGhSFG��2. Based
on the measured SHG and SFG efficiencies, we estimate
an upper limit for the expected THG efficiency. At the
peak wavelength of the THG process (1544.14 nm) we
measure a SHG efficiency, which is only �75% of the
maximal SHG efficiency, and a SFG efficiency, which is
only �80% of the maximal SFG efficiency. Based on
these, we estimate an upper limit to the THG efficiency
of 3.2 3 1024%��W2 ? cm2�. The discrepancy is mostly
due to the change in the focusing conditions, which has
slightly shifted the phase-matching points for the SHG and
SFG, as well as decreased the maximal efficiency due to
nonoptimal focusing conditions.

We designed and fabricated another GQPS in KTP in
order to investigate the effects of a periodic approximation
to the quasiperiodic sequence. To implement the periodic
approximation we created a basic set, which consisted of
the first 13 building blocks of the GQPS used for frequency
tripling. The basic set was repeated throughout the entire
length of the KTP crystal. When we repeated our measure-
ments with this GQPS, we discovered, for the first time to
the best of our knowledge, that the periodic approximation
shifted the SHG and SFG phase-matching points in oppo-
site directions. As a result, we were able to obtain simulta-
neous SHG and SFG, but not direct THG. We numerically
calculated the expected effect of this partitioning on the
phase-matching point. We found out that as the length of
023903-3
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FIG. 3. Normalized SHG power as a function of pump wave-
length measured with a GQPS in KTP; (a) calculated without
partitioning (1 3 1131, solid line) and with partitioning (87 3
13, dashed line); (b) measured with partitioning �87 3 13�.

the constructing sets becomes shorter, the phase-matched
wave vectors are shifted more significantly, and the ratio
between them changes. For example, with partitioning into
13-element sets, the ratio between the wave vector differ-
ences for the SHG and SFG interactions is 2.56, which is
6.5% smaller than the designed ratio, 2.74. Figure 3 shows
the shift of the phase-matching point for the SHG process,
and it can be seen that the numerical calculation based on
our theoretical model predicts this shift and fits the experi-
mental results.

In conclusion, we have designed and fabricated a novel
one-dimensional GQPS for nonlinear optics applications
and explored its temperature- and wavelength-dependent
properties. This novel structure has the ability to simulta-
neously phase match completely arbitrarily chosen inter-
actions, whose wave vector differences are, by no means,
related to each other. This represents a significant exten-
sion in the design flexibility with respect to the existing
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structures, i.e., periodic and Fibonacci-based structures. In
addition to single-pass frequency up-conversion processes,
which are demonstrated in this Letter, many nonlinear
processes require simultaneous phase matching and nu-
merous new optical devices may be realized. For example,
a quasiperiodic frequency mixer, which is suitable both for
phase matching of an optical parametric oscillator, as well
as for sum-frequency generation of the pump and signal (or
idler), can provide tunable radiation at wavelengths shorter
than the pump wavelength. We have studied both numeri-
cally and experimentally the effects of a periodic ap-
proximation to the GQPS and have found out that such
approximation shifts the phase-matching points in the
wave vector mismatch domain.

The GQPS’s proposed here are relevant to many fields in
fundamental physics other than nonlinear frequency con-
version. The ability to simultaneously phase match two
processes can be used for adiabatic shaping of quadratic
solitons [16] owing to the ability of solitons to adapt them-
selves adiabatically to the local wave vector mismatch
that they experience. Whereas our GQPS’s were imple-
mented in a ferroelectric material, they may be realized in
many other different materials such as semiconductor het-
erostructures [17], dielectric thin films [18], ferromagnetic
materials [19], etc., and can be explored by a variety of
physical effects, such as x-ray and Raman scattering [17],
ultrasonic interactions [20], etc.
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