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Glass Transition and Dynamical Heterogeneities in Charged Colloidal Suspensions
under Pressure
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Constant-pressure Monte Carlo simulations have been performed to study the static and dynamical
properties of a liquidlike ordered suspension of like-charged colloidal particles subjected to a sudden
compression. We report for the first time a liquidlike ordered monodisperse suspension undergoing a
glass transition at a very low volume fraction (¢ = 0.003) and existence of dynamical heterogeneities
near the glass transition. Mobile particles have been identified using the non-Gaussian parameter for
the self-part of the Van Hove correlation function, and they are found to form clusters. The pressure
dependence of mean cluster size and the cluster-size distribution of the mobile particles are discussed.
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Glassy phase can be obtained by abruptly cooling
(quenching) and/or compressing (pressure crush) a liquid
[1]. Many liquids undergoing glass transition exhibit
nonexponential decay of time correlation functions and
non-Arrhenius temperature dependence of relaxation
time with decreasing temperature [2]. In the recent past,
researchers have focused their attention on nonexponential
relaxation by performing computer simulations [3,4] and
experiments [5,6] on atomic systems. These studies sug-
gest that a superposition of different relaxation processes,
or dynamical heterogeneity, underlies the nonexponential
behavior. Simulations [3,4] on a Lennard-Jones (LJ)
binary system have shown the existence of dynamical het-
erogeneities. There is also experimental evidence, though
indirect, for the presence of dynamical heterogeneities
[5,6]. The direct experimental evidence for the existence
of dynamical heterogeneities has come only recently from
studies on hard-sphere (HS) colloidal suspensions [7,8].
These provide support in favor of the Adams and Gibbs
approach to the theories of glass transition. However,
many more experiments and simulations are required for
obtaining a complete understanding of the nature and the
dynamics of the glass transition. This necessitates investi-
gations on glass transition in systems which are amenable
to experimental verification with ease. We show that a
charged colloidal system is one among such systems which
can be studied in real space as well as in Fourier space,
and also in real time due to submicron length scales and
convenient time scales (107 to 1 s). These colloidal sys-
tems exhibit structural ordering, similar to that observed
in simple atomic systems, at volume fractions as low as
0.001 due to long-ranged screened Coulomb interactions.

The glass transition in atomic systems can be studied
by varying temperature, 7, and pressure, P. Tempera-
ture has been used extensively as a variable in the study
of glass transition, whereas the investigations using pres-
sure as a parameter are very limited. High-pressure studies
are expected to advance the understanding of relaxation
processes near the glass transition [1]. In the case of HS
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suspensions, volume fraction ¢ is the only relevant vari-
able and has been varied to study glass transition [7,8].
HS suspensions exhibit crystallization for ¢ = 0.49 and
undergo glass transition for ¢ > ¢, ~ 0.58 [9]. Unlike
atomic and HS systems, monodisperse charged colloidal
suspensions offer several advantages to probe the glass
transition: (i) One advantage is the easy tunability of in-
terparticle interaction over a wide range by varying the
inverse Debye screening length «, which in turn can be
varied by changing ¢, charge Ze on the particle, and
salt concentration C, [10,11]. (ii) These suspensions ex-
hibit structural ordering at much lower volume fractions
(~0.001) as compared to HS suspensions [10,11]. (iii) The
osmotic pressure (hereafter referred to as pressure) expe-
rienced by colloidal particles can be varied in experiments
using a membrane that is permeable to salt ions but not
to colloidal particles. (iv) The magnitude of the pressure
that needs to be varied in such experiments is only of the
order of 10 to 100 dyn/cm?, which is 10 orders of magni-
tude lower than that in atomic systems. Such small values
for the pressure arise due to the low particle concentration
(n, ~ 102 cm™3) [10,11].

Glass transition in binary [12] and polydisperse [11,13]
charged colloids have been studied as a function of ef-
fective temperature 7™, which is achieved by varying the
salt concentration in these suspensions. To our knowledge,
no studies exist on glass transition in these systems as a
function of pressure. Further, the existence of dynami-
cal heterogeneities near the glass transition of atomic sys-
tems driven by pressure has not been established. This
motivated us to carry out constant pressure Monte Carlo
(MC) simulations on charged colloids as a function of P.
We report here the phase behavior of a liquidlike ordered
charged colloidal suspension subjected to sudden compres-
sion. The colloidal liquid showed crystallization under the
application of sequential compression, whereas freezing
into a colloidal glassy state has been observed under sud-
den compression. Surprisingly, the glass transition occurs
at much lower volume fraction (¢ = 0.003) as compared
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to the experimental observations of glass transition (¢ =
0.2) in monodisperse charged colloidal suspensions [14].
We also report, for the first time, the existence of dynami-
cal heterogeneities near glass transition driven by pressure.

We perform extensive constant pressure MC simulations
of an aqueous colloidal suspension of N (= 2000) charged
particles, having diameter d = 109 nm and charge Ze =
600e, placed in a cubic MC cell of volume V. The
(N,P,T) MC procedure used in this study has been
described elsewhere [15]. The particles are assumed to in-
teract via screened Coulomb repulsive potential [10] given
by U(r) = [2Z%e%¢*D /(2 + kd)*][e *"/r], where €
is the dielectric constant of water (= 78) at temperature
T (= 298 K), and « is given by k> = 47e?(n,Z + Cy)/
(€kgT). Here kp is the Boltzmann constant and ¢ is
related to n, by ¢ = md®n,/6. The units of vari-
ous quantities reported in this paper are as follows: P,
dyn/ cm?; energy, kgT; , 1/d; length is expressed in units
of average interparticle distance defined as a; = n;l/ 3.
and the MC time ¢ in units of MC steps (MCS), where one
MCS is defined as a set of N configurations during which,
on the average, each particle gets a chance to move.

The starting configuration corresponding to a well equi-
librated liquid state for ¢ = 0.902 X 1073, x = 0.587,
C, =2 uM, and P = 1.07 is obtained by melting a
body centered cubic lattice. The equilibrium state is
characterized to be liquidlike from the behavior of the
pair-correlation function g(r) and the mean square dis-
placement (MSD) (r?(¢)) [11]. The liquid is subjected to
sudden compression by simply setting the pressure in the
MC procedure to the desired higher value. We found it
sufficient to use 5 X 10° configurations for equilibration
for pressures away from the glass transition and about
2 X 107 configurations close to the transition. After
reaching equilibrium, 10° independent configurations
have been used to calculate g(r), (r*(¢)), average number
density (n, ), self-part of the Van Hove correlation function
G,(r, 1) [13], and the non-Gaussian parameter a;(¢) [3].

The knowledge of transition pressure P, at which the
colloidal liquid crystallizes is essential for identifying the
supercooled liquid state and the glass transition. Hence,
freezing of a colloidal liquid into a colloidal crystal un-
der the application of pressure is studied by incrementing
the pressure sequentially, and crystallization is found to
occur at P, = 4.8. However, the same colloidal liquid
showed liquidlike behavior with a smooth second peak in
g(r) (see Fig. 1) when subjected to different amounts of
pressure crush for pressure up to 20 and distortions in the
second peak (see Fig. 1) with an increase in the magnitude
of first peak height in g(r) for P > 20. The latter behav-
ior in g(r) is often considered as a signal for the glasslike
ordering in colloidal as well as atomic systems [12,16].
The disordered state occurring for P > 20 is confirmed
to be glass, from the time independent shape of h(r,1)
[Fig. 1(b)] which is characteristic of a frozen structure.
The quantity h(r,z) = 47r2Gy(r, 1) gives the probabil-
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FIG. 1. (a) g(r) vs reduced distance r/a, for suspensions
with kd = 0.587 after subjecting the initial liquidlike ordered
suspension with ¢ = 0.902 X 1073, P = 1.07 dyn/cm?, and
Cy = 2 uM to different amounts of pressure crush. The curves
are shifted vertically by different amounts for the sake of clar-
ity. Self-part of the Van Hove correlation function h(r,t)
at different MC times for (b) P = 100 dyn/cm? and (c) P =
20 dyn/ cm?. Continuous line is for 7 = 500 MCS; dotted line
is for t = 1500 MCS; dash-dotted line is for + = 2500 MCS.

ity density for a particle to move a distance r in time ¢
[12,13]. Since in a liquid particles undergo macroscopic
diffusion, the corresponding h(r,t) will show time de-
pendence [Fig. 1(c)]. Further, it can be seen that at very
long times the MSD [Fig. 2(a)] of particles in the glassy
state is also very small ({(r())/a? < 0.1). In the liquid
state, for P < 20, the corresponding MSD of particles is
larger than a? ((r*(¢))/a? > 1). The glass transition pres-
sure P, is identified using the well known Wendt-Abraham
parameter [16] Ry = gmin/&gmax, Where gmin and gmax are,
respectively, the values of g(r) at its first minimum and
its first maximum. The R, derived from g(r) for different
values is shown in Fig. 3(a). The value of R, at the in-
tersection is about 0.14, which is the same as that found
in atomic systems [16], and the corresponding value of
the pressure defines the glass transition pressure P, = 27.
The plot of ¢ versus P also shows [Fig. 3(b)] the occur-
rence of glass transition at P,.

<r2(t)>/as2

az(t)

FIG. 2. (a) Mean square displacement {(r?(t)/a?) vs time (in
MCS units) for several values of P. (b) Non-Gaussian parameter
a,(t) vs time for the same values of P as in (a).

018302-2



VOLUME 88, NUMBER 1

PHYSICAL REVIEW LETTERS

7 JANUARY 2002

0.20 , : :
. (a)
0.16 &
o0 L)
(7
0.12, T _
0.08 . (b)
o L .
I e A
< ° §4 [ \T\o\,
& 0 50 109
’ . ‘ _P(dynes/cm”)
0 40 80 120
P(dynes/cmz)

FIG. 3. (a) Wendt-Abraham structural parameter R, as a func-
tion of P to which the initial liquidlike ordered suspension is
pressure crushed. (b) Plot of ¢ versus P. The arrows indicate
the glass transition pressure P, = 27 dyn/cm®. The values of
R, and ¢ at P, are 0.136 and 0.0032, respectively. Inset shows
T versus P.

In addition to the structure, we also study the dynamics
of the particles as a function of pressure. Unlike in mo-
lecular dynamics simulations, we do not observe ballistic
motion at short times because of the stochastic dynamics
underlying the MC procedure. The motion of particles is
found to be diffusive at all times, i.e., (r2(¢)) = t", m = 1
for the liquidlike ordered state observed at P = 1.07. It
is known that for short times particles diffuse freely in the
liquid state. This fact has been used to estimate the physi-
cal time corresponding to one MCS to be about 18 us via
the relation (r?(¢)) = 6Dot and the knowledge of diffusion
constant Dy = 4.82 X 10738 cm?/s. In the supercooled
state obtained by pressure crush, the MSD showed three
stages in time [Fig. 2(a)]. The short time diffusive be-
havior becomes subdiffusive (m << 1) at intermediate time
due to the “caging” experienced by particles, and the slow
rise is due to the B relaxation. The span of the subdif-
fusive regime increases with P. At the end of subdiffu-
sive regime, MSD once again rises which corresponds to
cage rearrangement that occurs at longer times as the glass
transition is approached. The rise in MSD at long times
at lower pressures is due to the « relaxation. This is con-
firmed by monitoring the particle trajectories over a long
period. The particles are found to spend most of their time
confined in cages, formed by their neighbors, and move
significant distances during cage rearrangements. Such
a motion for particles has been observed in HS suspen-
sions [8].

Dynamical heterogeneities near a glass transition can be
detected by investigating time dependence of G,(r, t). Toa
first approximation G(r, t) has a Gaussian form, referred
to as G (r, t), but deviation from this at intermediate times
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reflects the presence of dynamical heterogeneities [3.4].
Such deviations can be characterized by the non-Gaussian
parameter as(t) = [3(r*(1))/5(r*(1))*] — 1 [3]. ax(t) =
0 if Gy(r,t) is a Gaussian. Figure 2(b) shows the time
dependence of «; at four different pressures. We find a;
starts to increase for all the pressures on the time scale of
the B relaxation. On the other hand, a, decreases to its
lowest value in the supercooled liquid state (for P < 27)
and continues to be high for the glassy state (for P > 27)
in the a-relaxation regime. a is found to decrease at
longer times (1 > 10* MCS) in the glassy state as com-
pared to the supercooled state. The time ¢* at which this
maximum is attained is found to increase rapidly with the
pressure up to P, and slowly beyond P,. The increase
in a, is evidence that the dynamics of the colloidal lig-
uid becomes more heterogeneous with increasing pressure.
Studies on the supercooled liquid of LJ systems with de-
creasing temperature showed similar behavior in a5 [3,4].

We further observe from Fig. 2(b) that a; for glass is
more than that in the supercooled liquid in the a-relaxation
regime. Observations on HS colloidal glass showed a drop
in the value of @, as compared to that of the HS liquid
[8] close to the glass transition. This difference in the be-
havior of a; between these two systems could be due to
the following reasons. Even though there is no change in T
across the glass transition in both systems, there is a change
in the effective temperature 7, of the charged colloidal
system. For a charged colloidal system, 7* is defined as
kgT/U(ay) [11,12] and its variation with P is shown as an
inset of Fig. 3(b). The effect of pressure crush in charged
colloids is twofold. (i) It reduces the interparticle sepa-
ration, and (ii) it also results in an effective temperature
quench to the system. Thus the pressure crushed charged
colloidal liquid is also a supercooled liquid.

To study structural relaxation and cooperative motion of
particles in the supercooled liquid state of charged colloids,
we examined mobile (fastest moving) particles by follow-
ing the procedure of Glotzer’s group [3,4]. We monitor
the displacements of particles up to time ¢*. We choose
this time interval because ¢* is the time at which the lig-
uid is likely to be the most “dynamically heterogeneous”
and also the distribution of particle displacements is the
broadest. The particle displacements are calculated for all
particles in this time interval. The distribution of particle
displacements at any time ¢ is given by the self-part of
the Van Hove correlation function G(r, t). The subset of
mobile particles was defined by selecting all the particles
which have traveled farther than the distance »* in the time
interval [0, £*]. Note that G,(r,t*) > Gg(r,t*) for r > r*
[Fig. 4(a)]. This definition implies that mobile particles
are those that contribute to the long tail of G,(r,t"); see
Fig. 4(a). The total number of mobile particles thus de-
fined is about 5% of the total number of particles at all
the pressures studied here. The studies on the supercooled
LJ liquid have shown the same percentage for the mobile
particles [3.,4].
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FIG. 4. (a) Solid line: h,(r,t) for particles at t = ¢* for P =
20 dyn/cm?. Dashed line: Gaussian approximation hy(r,1) =
47r*G,(r,t) determined using the calculated (r(r)) for the
same time. (b) Pair-correlation functions g,,(r) and g(r) for
the mobile and bulk particles, respectively, for the value of P
the same as in (a). (c) Probability distribution I'(n) of clusters
of mobile particles of the size n for three values of P. Inset:
Mean cluster size S vs P. Lines drawn through the simulation
points are guides to the eye.

The spatial correlation between the mobile particles is
investigated by calculating the pair-correlation function
gm(r) for the mobile particles and comparing it with that of
the bulk denoted by g(r). It can be seen from Fig. 4(b) that
the peak height of g, (r) is much larger than that of g(r),
suggesting that the mobile particles are spatially more cor-
related as compared to the rest of the particles in the bulk.
The analysis of snapshots of the configurations of the mo-
bile particles showed that these particles tend to form clus-
ters. Figure 4(c) shows the probability distribution I'(n)
of clusters of size n for the mobile particles. It can be
seen that the clusters of larger size form with an increase
in pressure; i.e., the cluster size grows as one approaches
the glass transition. A significant fraction of the mobile
particles is found to be part of the big clusters. For in-
stance, at P = 20 there is typically at least one cluster in
each configuration that contains =60 particles. The av-
erage cluster size S = > n?I'(n)/ > nI'(n) [4] (shown as
an inset) is found to increase linearly with P. We found
that for P = 20 the I'(n) decays as n~? with y = 1.80
except for the tail portion which is found to be system size
dependent. For example, the largest cluster size for simu-
lations with N = 1024 is found to be 51 in contrast to 60
for N = 2000. This value of vy is close to that observed
in the LJ system [4] and in HS suspensions [8]. This sug-
gests that the behavior of dynamical heterogeneities near
the glass transition in charged colloids obtained by pres-
sure crush is similar to that observed in LJ fluids and HS
suspensions.
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To conclude, the present simulations have shown that
the charged colloidal suspensions can serve as an ideal
condensed matter system to study the glass transition un-
der pressure. We have established for the first time the
existence of spatially correlated dynamical heterogeneities
in the supercooled fluid state of charged colloidal suspen-
sions. Another important result from these simulations is
that the glassy state in deionized charged colloids can be
obtained at very low volume fraction by subjecting them
to small amounts of pressure crush. This reduction will
greatly help experimentalists to probe the glass transition
in these systems using microscopy and light scattering.
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