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Conformations and Interactions of Star-Branched Polyelectrolytes
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Combining monomer-resolved molecular dynamics simulations with a theory based on a variational
free energy, we calculate the conformational properties and the effective interactions of star-branched
polyelectrolytes for a large variety of arm numbers, degrees of polymerization, and charge fractions, with
and without added salt. We find quantitative agreement between theory and simulation and put forward
analytical expressions that allow the calculation of the interaction between such macromolecules.
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Polyelectrolytes (PEs) are polymer chains containing
ionizable groups. Upon solution into a polar solvent, these
groups dissociate, leaving behind a system of charged
chains and counterions. The study of PEs has been the
subject of many recent investigations [1–7]. When these
charged chains are grafted on solid surfaces, they form PE
brushes; when their ends are brought together to a common
point, they form PE stars. Conformations and interactions
of planar PE brushes have also been studied in some de-
tail, using scaling theory, self-consistent field (SCF) cal-
culations, and computer simulations [8–11]. Spherical PE
brushes and stars are much less well understood. These are
systems of great physical and practical importance: graft-
ing of PE chains on colloidal particles greatly enhances
their stability against flocculation [12,13]; PE brushes are
models of block copolymer micelles formed by hydropho-
bically modified PEs in aqueous solutions [14], and they
have considerable potential in industrial applications due
to the increased need for water-supported systems [15]. PE
stars interact by means of three physical mechanisms: the
electrostatic interaction of their charges, the steric repul-
sion between the chains, and the entropic repulsion of their
counterions. The pioneering work on star-shaped PEs goes
back to Pincus [12], who predicted that the force between
two PE stars should be dominated by the entropic con-
tribution of the counterions. Recently, Borisov et al. put
forward a scaling theory, together with SCF calculations to
study the conformations of isolated PE stars [14,16]. How-
ever, a systematic investigation of the interactions of the
same, by means of computer simulations and an analyti-
cal theory valid for both isolated and interacting PE stars,
is still lacking. In the present work, we employ molecu-
lar dynamics (MD) simulations and a variational theory
to study the sizes, conformations, and interactions of PE
stars for high charging fractions. We find a stretching of
the chains and significant counterion condensation and we
confirm Pincus’ prediction [12] explicitly.

In our MD simulations, we have f chains with N
monomers per chain, all attached on a common micro-
scopic core. The chains are charged periodically: every
1�a bead carries an elementary charge jej, yielding
Q � afN charges in the star and Q oppositely charged
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counterions. The simulation model was introduced by
Stevens and Kremer [17] for linear PE chains. The
monomers are modeled as spherical beads interacting by
means of a truncated and shifted Lennard-Jones potential
[18], with energy ´LJ � kBT�1.2 and length scale s. A
finite-extendible-nonlinear-elastic (FENE) potential [19]
binds the adjacent monomers along the chains and the
Coulomb interaction acts between all charged units. The
solvent has dielectric constant e; the Bjerrum length is
lB � e2��ekBT �. We take lB � 3.0s, a realistic value
for typical hydrophilic polyelectrolytes [20] �s � 2.5 Å�
in water �lB � 7.14 Å�. The Lekner method [21] is
employed for the Coulomb sums. We considered PE
stars with f � 5, 10, 30, and 50 arms, with N � 50
monomers, and a � 1�6, 1�4, and 1�3.

We first consider a single PE star in a cubic simula-
tion box with an edge length of L � 90s, which defines
the density rs � L23 of the solution, and periodic bound-
ary conditions. After a sufficiently long equilibration time,
different static quantities were calculated: radii of gyration
Rg, center-to-end distances R, correlation functions of the
bond vectors of the beads, as well as density profiles of
all species involved. Moreover, we measured the average
number of counterions Nin inside the radius R of the star
and the fraction thereof that was condensed along the rods,
by surrounding every charged monomer with a fictitious
sphere of radius lB and monitoring the number of counte-
rions inside all spheres. A scaling behavior of the profile as
a function of the distance from the star center was found,
with a slope �21.8, pointing to a stretched chain configu-
ration. The fully rodlike limit of the PE chains yields a
slope value of 22 [14,16] and has been seen in neutron
scattering studies of block copolymer micelles [22]. Be-
cause of lateral chain fluctuations [2–5,23], the measured
slope is somewhat smaller, it indicates nevertheless an al-
most complete stretching of the chains. The counterion
profile showed the same r dependence as the monomer
one, due to the tendency of the system to achieve local
charge neutrality.

In the theory, we consider a star in a dilute solution of
density rs and define accordingly the Wigner-Seitz radius
RW � �4prs�3�21�3. Following Ref. [14], we envision
© 2001 The American Physical Society 018301-1
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the star as a sphere of radius R enclosed in a cell of radius
RW . R; all counterions are restricted to move inside the
cell RW . Particular attention has to be paid to the Manning
condensation of counterions on the chains [1–7,24–26],
which takes place when the parameter j � lBNa�R ex-
ceeds unity [24]. This condition is satisfied for all our pa-
rameter combinations, as summarized in Table I. Hence,
we partition the Q counterions into three states and write
Q � N1 1 N2 1 N3. N1 is the number of condensed
counterions on the rods of the star, N2 are those who
are trapped inside the star but move freely there, and N3
stay in the region R , r , RW . Since we are in the
regime where the ratio lB�s is of order unity, the con-
densed counterions can move freely along the rod direc-
tion [4]. Accordingly, we introduce tubes of length R
and radius lB surrounding each rod and treat all coun-
terions contained in these tubes as condensed. The in-
terior volume V �R� � 4pR3�3 of the star is divided as
V �R� � V1 1 V2 with V1 � fp�l2

B 2 s2�R being the
total volume of the hollow tubes available to the condensed
counterions, and V2 the volume available to the N2 mobile
counterions inside. Moreover, let V3 � 4p�R3

W 2 R3��3
be the volume of the spherical shell for the free counte-
rions, and ri�r�, i � 1, 2, 3, the number densities of the
three counterion states.

The equilibrium values for R and Ni are determined
through minimization of the variational free energy

F �R, �Ni�� � UH 1 Uc 1 Fel 1 FFl 1

3X
i�1

Si , (1)

where the various terms have the following meaning:
UH � �1�2e�

R R
d3r d3r 0 ��r���r0��jr 2 r0j is the

Hartree-type, mean-field electrostatic energy of the whole
star with the local charge density � �r� to be defined
below. We assume that the only relevant correlations
arise between the condensed counterions and the charges

TABLE I. Comparison of conformational properties between
simulation and theory. The polymerization of the chains is
N � 50 for all entries. The last two rows show the same prop-
erties for Ns added salt counterions, and they correspond to salt
concentrations cs � 0.088M and cs � 0.109M , respectively.

f a Q R�sa R�sb Nin
a Nin

b N1
a N1

b

5 1�3 80 26.8 26.1 47 57 27 25
10 1�6 80 23.4 23.7 42 59 22 38
10 1�4 120 25.3 25.2 77 97 46 61
10 1�3 160 27.4 26.9 110 134 72 81
18 1�6 144 24.2 25.8 91 121 60 90
18 1�4 216 26.6 26.9 156 190 107 141
18 1�3 288 28.3 28.1 217 260 159 190

f a Ns R�sa R�sb Nin
a Nin

b N1
a N1

b

10 1�3 600 22.6 22.7 156 155 54 71
10 1�3 750 21.8 22.1 164 156 56 74

aSimulation.
bTheory.
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on the chains. Hence, the correlation energy Uc stems
from the attractions between the rods and the condensed
counterions contained in the associated tubes. We esti-
mate the average rod-condensed counterion separation as

zm � �1�2�
q

l
2
B 1 y2

m, where ym � R��Na� is the dis-
tance between two sequential charged monomers along the
chain, obtaining Uc � 2kBTlBN1�zm. The term Fel �
3kBTfR2��2N� is the elastic contribution of the chains
and the term FFl � 3kBTy� fN�2��8pR3� the Flory-type
contribution from the self-avoidance of the same,
with the excluded volume parameter y. Finally, the
terms Si are ideal entropic contributions of the form
Si � kBT

R
Vi

d3r ri�r� lnri�r�.
The chains are modeled as being fully stretched; i.e., the

density distributions inside the stars fall off as �r22 from
the center but are uniform outside the star. This is different
from the approach of Ref. [14], where uniform densities
inside and outside the star were employed. Reasonable
results for the isolated star are obtained using uniform
profiles; however, the nonuniform ones are of paramount
importance for obtaining agreement with simulation results
regarding the effective interaction. Accordingly,

��r�
jejQ�

�
Q�R 2 r�

4pRr2 2
Q�r 2 R�Q�RW 2 r�

V3
, (2)

with the net charge jejQ� � jej �Q 2 N1 2 N2� and
the Heaviside step function Q�x�. The number densities
are r1�r� � N1�V1 inside the tubes and zero otherwise;
r2�r� ~ r22Q�R 2 r�, with the proportionality constant
being determined through the condition

R
V2

d3r r2�r� �
N2; and r3�r� � Q�r 2 R�Q�RW 2 r�N3�V3. The
value of the excluded volume parameter y for stiff PEs
has been the topic of extensive discussion [9,12,25].
Here, the estimate of Ref. [14], y � lBk22a2, is used,
with the inverse Debye length k �

p
3N2lB�R3. Tak-

ing typical values N2 � 40, R � 30s, a � 1�3, we
obtain y � 25s3. We subsequently employed the value
y � 30s3; the theoretical results showed however a very
weak variation with y for values 20 # y�s3 # 40 that
we considered.

The results are summarized in Table I. The radii val-
ues from theory and simulation are in good agreement
for all parameter combinations considered. Regarding the
total number of trapped counterions Nin � N1 1 N2 and
N1 of condensed counterions, we can make the follow-
ing remarks: both are overestimated in the theory, by an
amount depending on the charging fraction a. This over-
estimation can be explained by the fact that we assumed a
complete stretching of the chains (rodlike configuration),
which results in a stronger electrostatic attraction than the
true one, in which lateral chain fluctuations are present.
The same mechanism is responsible for the overestimation
of N1. This claim is corroborated by the remark that the
largest discrepancies occur for the smallest charge frac-
tion, a � 1�6, where the assumption of stretched chains
is most questionable. On the other hand, the ratio of
018301-2
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condensed to absorbed counterions appears to be almost
constant, �70% for f * 10, both in theory and simulation.
The theoretical results have been obtained with a minimal
amount of fitting: in particular, the value of the excluded
volume parameter y has been held constant, despite its
(weak) � f, N ,a� dependence. However, a variation of y

would obscure the clarity of the theory which, with the
present, minimal assumptions, captures the salient features
of the star conformations: it reproduces the tendency of the
PE stars to increase the fraction Nin�Q of absorbed coun-
terions as f and/or a increase, in line with the predictions
of scaling theory in the “osmotic star” regime [16]. The
theory can also be extended to the case of added salt by the
addition of entropic terms for the counterions and coions.
We have performed simulations for the salted case as well,
finding, in full agreement with theory, that the addition of
salt results in an almost complete neutralization of the PE
star with increasing salt concentration cs, to a shrinking of
its radius and to an exclusion of all coions from the star
interior; see Table I.

Next we consider the effective interaction Veff�D�
between two PE stars kept at center-to-center distance
D. Veff�D� results after taking a canonical trace over all
but the star-centers degrees of freedom and is defined
as F2�D� 2 F2�`�, where F2�z� is the Helmholtz free
energy of two PE stars at center-to-center separation
z [27]. In a standard simulation, the effective force
F�D� � 2 �=Veff�D� is measured [18,27]. By placing
the star centers along the body diagonal of the cubic
simulation box, we measured the effective force F�D� for
various � f, N , a� combinations and for distances ranging
from deep interpenetrations to barely nonoverlapping
stars. We have checked that the image charges have only
a minor effect in the measured forces at bare overlaps. In
addition, we have carried out simulations in the presence
of salt, which screens out the effects of image charges,
finding similar agreement with theory as the one we report
below for the salt-free case. We will report on the results
for added salt in a future paper.

When two PE stars overlap, the chains of each star re-
tract, a feature already conjectured by Pincus [12] and also
confirmed in all our simulations. Hence, the two stars are
modeled as “fused spheres,” each carrying the cloud of its
untrapped counterions around it, as shown in Fig. 1. The
chains remain otherwise stretched; hence a �r22 falloff of
the density profile from each star center remains. Because
of the retraction of the chains, the two profiles from each
center do not overlap. Rather, each profile is sharply cut
off as soon as the distance from the corresponding center
reaches the bisecting plane located at a distance D�2 from
the centers. The variational free energy F �D� is written
as in Eq. (1).

For convenience, we separate the total charge density
� �r� into two terms, �in�r� in the interior of the fused
spheres �Vin� and �out�r� in the eight-shaped region
outside �Vout� ? �out�r� is homogeneous and equal to
018301-3
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FIG. 1. Sketch of two PE stars at separation D.

2jejQ��Vout. We choose a spherical polar coordinate
system with its origin the center of the left star (see
Fig. 1). Setting ru � r cosu and v � u 2 u0, we
write �in�r� � Ajej 	P�r� 1 P�D 2 r�
 with the shape
function:

P�r� �
1
r2

	Q�R 2 r�Q�v� 1 Q�D�2 2 ru�Q�2v�
 ,

(3)

where A � Q��4pR	1 1 cosu0�1 2 ln cosu0�
�21 guar-
antees that

R
Vin

d3r �in�r� � jejQ�. The term Uc remains
unaffected by D and the elastic energy Fel is the sum of
the two star contributions. The Flory free energy is FFl �
kBTy�2fN �2��2Vin�. The entropic terms Si include now
the D-dependent volumes of integration and correspond-
ing profiles ri �r�. In particular, r1�r� is uniform within
the 2f tubes and zero otherwise. The trapped counterion
density r2�r� has the form r2�r� � B	P�r� 1 P�D 2 r�
;
see Eq. (3). The constant B is determined by the con-
dition

R
V2

d3r r2�r� � N2, where V2�D� � Vin�D� 2 V1.
Finally, r3�r� � N3�Vout�D�.

The radius R is independent of D and equal to the
single-star value, as a result of chain stretching. Moreover,
the number of condensed counterions N1 of both PE stars
was treated in our considerations as a D-independent fit pa-
rameter, tuned in order to achieve optimal agreement with
simulation, in analogy with the charge-renormalization
technique used in the realm of charged colloidal suspen-
sions [28,29]. If no charge rearrangement took place upon
close approach, this value would be exactly twice the num-
ber of condensed counterions of a single PE star [30]. Our
resulting values are within 15% of this number, pointing
to the fact that the fit parameter is not arbitrary but rather
it turns out to lie within physically acceptable limits.

The results for the force are shown in Fig. 2, showing
good agreement between theory and simulation. The
shape of the force is determined almost entirely by
the entropic term S2 and the electrostatic contribution
UH plays only a minor role, as the PE stars are al-
most electroneutral, in agreement with the predictions
of Ref. [12]. A simple and accurate fit is given by
F�D� � CD2g, with 0.7 & g & 0.8, and a constant
C . 0. The precise g value depends on a. The magni-
tude of the force is mainly determined by the amount of
018301-3
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FIG. 2. Effective forces between two PE stars: comparison
between theory (lines) and simulation (points). The inset axes
have the same labels as those of the main plot.

mobile counterions N2 � Nin 2 N1 inside. The number
of condensed counterions has in practice the effect of
setting the scale of the force, in full analogy with the role
played by the renormalized charge in charge-stabilized
colloidal suspensions [29]. The force is considerably
larger than the one acting between neutral stars �a � 0�
of the same N and f [18] and grows with increasing
a, pointing to a charge-induced enhancement of colloid
stabilization [12].

For the interaction beyond overlap, our theoretical cal-
culations show that this has a Yukawa form. Matching of
the two expressions for D # 2R and D . 2R leads then
to the full interaction potential. The latter displays simi-
lar qualitative features as the interaction potential between
neutral stars [31], i.e., a crossover from a Yukawa-like tail
for large separations into an ultrasoft form for strong over-
laps. Thus, we anticipate that the phase diagram of PE
stars will show similar qualitative features as that of the
neutral stars [32], namely, reentrant melting and a lower
critical freezing arm number fc below which the solu-
tion will remain fluid at all concentrations. In view of the
fact that the present interaction is much stronger at over-
lap than the one for neutral stars, fc will be smaller than
the corresponding value 34 obtained for the latter [32].
Associated are anomalous structure factors displaying two
independent length scales [32] and a principal peak whose
height decreases beyond the overlap concentration. Hence,
our effective interaction could be employed in understand-
ing scattering profiles from concentrated PE star solutions
[13,15,33].
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