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The requirement of performing both single-qubit and two-qubit operations in the implementation of
universal quantum logic often leads to very demanding constraints on quantum computer design. We
show here how to eliminate the need for single-qubit operations in a large subset of quantum computer
proposals: those governed by isotropic and XXZ, XY -type anisotropic exchange interactions. Our method
employs an encoding of one logical qubit into two physical qubits, while logic operations are performed
using an analogue of the NMR selective recoupling method.
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Most proposals for quantum computer (QC) design rely
on the execution of both single-qubit and two-qubit op-
erations. Typically these two types of operations involve
rather different manipulations and constraints. This of-
ten leads to serious technical difficulties, a problem which
has been recognized and addressed in the context of QC
proposals with isotropic Heisenberg spin-exchange inter-
actions [1,2], through the use of quantum codes [3–9]. It is
important to note that isotropic exchange is an idealization
which in reality is likely to be perturbed due to surface and
interface effects, as well as spin-orbit coupling [10]. We
focus here primarily on QC proposals that are governed
by anisotropic exchange interactions [11–15] (the XXZ
and XY models, defined below). These systems either
share some of the difficulties in implementing single-qubit
gates exhibited by Heisenberg systems [1,2] (e.g., in the
case of the quantum Hall proposal [11], extreme g-factor
engineering, highly localized and inhomogeneous mag-
netic fields, and heating due to the high-intensity rf field
needed for single-spin operations), or have other problems
resulting from the need to implement both single- and
two-qubit gates. For example, in the quantum dots in
cavities proposal [12] elimination of the single-qubit op-
erations would halve the number of lasers, significantly
simplifying the experimental setup. There is therefore a
compelling motivation to reexamine the need for single-
qubit operations in the execution of quantum logic. Here
we show how the complications associated with single-
qubit operations can be avoided through the use of NMR-
like recoupling methods [16] applied to an encoding of
two physical qubits into one logical qubit, which we de-
veloped in [17]. Our method allows universal quantum
logic to be attained through switching on/off exchange in-
teractions only, without requiring external single-qubit op-
erations. The method requires a modest overhead in the
number of physical qubits and gate operations, but this
seems like a fair price to pay in return for the reduction
in complexity of experimental setup. Through the use
of recoupling we are able to unify the treatment of both
isotropic and anisotropic exchange. Similar to [8,9] but
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using less stringent methods, we show how to reduce the
overhead in the encoding proposed earlier for the isotropic
case [3–6] from three physical qubits per logical (encoded)
qubit to two, under the assumption that the single-particle
spectrum is nondegenerate. In the XXZ case, our imple-
mentation of the controlled-phase (CPHASE) gate uses
as few as four interactions (in parallel mode on qubits
arranged in 1D). The efficient encoding, and the small
overhead in number of gate applications we report here,
suggests that the hurdle of single-qubit operations may be
overcome in forthcoming experiments implementing ele-
mentary quantum logic in isotropic or anisotropic con-
densed or gas phase systems [1,2,11–15].

Exchange Hamiltonians.—Using spin notation, the ex-
change interaction quite generally [18] has the form Hex �P

a�x,y,z

P
i,j Ja

ijs
a
i s

a
j , where s

a
i are the Pauli matrices,

and the summation is over all qubit pairs i, j. Tunability of
the exchange constants Ja

ij is at the heart of all solid-state
proposals, and has been studied in detail, e.g., in [1]. The
isotropic (Heisenberg) case corresponds to Ja

ij � Jij . The
XY model is the case Jx

ij � J
y
ij , Jz

ij � 0. Examples of QC
proposals that fall into this category are the quantum Hall
proposal [11], quantum dots [12,13], and atoms in cavi-
ties [14]. The XXZ model is the case Jx

ij � 6J
y
ij fi Jz

ij .
[We refer to 1 �2� as the axially symmetric (antisymmet-
ric) case.] When surface and interface effects are taken
into account, the XY examples, as well as the Heisenberg
examples [1,2], are better described by the axially sym-
metric XXZ model. Additional sources of nonzero Jz

ij in
the XY examples can be second-order effects (e.g., vir-
tual cavity-photon generation without spin flips in [12]). A
natural XXZ example is that of electrons on helium [15].
All these QC proposals were originally supplemented with
external single-qubit operations, which can be written as
F �

P
i fx

i s
x
i 1 f

y
i s

y
i . As argued above, these opera-

tions almost invariably lead to various (system-specific)
difficulties, so we will not assume that they are available.
In general one must also consider the free Hamiltonian
H0 �

P
i

1
2´is

z
i , where ´i is the single-particle spectrum.

In general, this spectrum will be nondegenerate, e.g., due
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TABLE I. Comparison of some QC proposals in terms of difficulty of implementing two-qubit �Ja
ij �, internal �´i�, and external

single-qubit operations � f
x,y
i �. H0 � fixed means that it is hard to independently change each ´i .

System Two-qubit Hamiltonian H0 �
P

i
1
2 ´is

z
i External f

x,y
i

Spin-coupled quantum dots [1] Heisenberg, controllable Fixed Hard
Donor atom nuclear/electron spins [2] Heisenberg, controllable Fixed Hard
Quantum Hall [11] XY , controllable Fixed Hard
Quantum dots/atoms in cavities [12,14] XY , controllable Controllable Easy, requires additional lasers
Exciton-coupled quantum dots [13] XY , controllable Fixed Hard
Electrons on helium [15] XXZ, only J1

ij controllable Controllable Easy but slow and hard to tune
to different local g factors [1,2]. Which of the internal pa-
rameters �Ja

ij , ´i� are controllable is a system-specific ques-
tion, as summarized in Table I. We now proceed to show
how to perform (encoded) universal quantum computation
while respecting the constraints imposed upon controlla-
bility of �Ja

ij , ´i� by the various systems.
Encoding and operations.—First, we rewrite the general

exchange Hamiltonian in a form which emphasizes axial
symmetry:

Hex �
X

i,j

J2
ij Rx

ij 1 J1
ij Tx

ij 1 Jz
ijs

z
i sz

j , (1)

where

Tx
ij �

1
2 �sx

i sx
j 1 s

y
i s

y
j � , Rx

ij �
1
2 �sx

i sx
j 2 s

y
i s

y
j � ,

(2)

and J6
ij � Jx

ij 6 J
y
ij. Thus, the axially symmetric (anti-

symmetric) case corresponds to J2
ij � 0 �J1

ij � 0�. Note
that Tx

ij can also be written as s
1
i s

2
j 1 s

2
i s

1
j [where

s
6
i � �sx

i 6 is
y
i ��2], i.e., resonant energy transfer be-

tween qubit pairs. An important example of this is the
Förster process, whereby through a Coulomb interaction
an exciton hops between neighboring quantum dots that
are sufficiently close. This has been used to show that
a variety of quantum information processing tasks, such
as the preparation of entangled states of excitons, can be
performed in coupled quantum dots [13]. Our results
apply to this scenario as well. In the axially symmet-
ric case, our code is simply j0L�m � j"�2m21 ≠ j#�2m and
j1L�m � j#�2m21 ≠ j"�2m for the mth encoded qubit, m �
1, . . . , N�2. In the axially antisymmetric case, j0L� � j""�
and j1L� � j##� (in simplified notation). Thus, logical
qubits correspond to pairs of nearest neighbor physical
qubits (e.g., spins). Preparation and measurement of these
states was discussed in Ref. [17]. Briefly, preparation re-
lies on relaxation to the ground state of the Hamiltonian Tx

ij
�Rx

ij� in the axially symmetric (antisymmetric) case, while
measurement (which can also be used for preparation) em-
ploys an analogue of Kane’s ac capacitance scheme [2].
It is important to note that none of the terms in Hex are
capable of flipping spins i, j separately. Therefore the ax-
ially symmetric and antisymmetric subspaces are decou-
pled. This means that we can independently operate on the
corresponding subspaces. Our discussion below is carried
out in tandem for these two cases. With the single number
m serving to label our encoded qubits, it is advantageous
017905-2
to compactify our notation further. Let Ja
m � Ja

2m21,2m
�a � z, 6�, and e6

m � �´2m21 6 ´2m��2.
Let us now introduce operators which implement

rotations on the encoded qubits. Let Tx
m � Tx

2m21,2m

and Tz
m �

1
2 �sz

2m21 2 s
z
2m�; Rx

m � Rx
2m21,2m and Rz

m �
1
2 �sz

2m21 1 s
z
2m�, where Tx

2m21,2m and Rx
2m21,2m were

defined in Eq. (2). As we showed in [17], Tx
m �Rx

m�
acts as the Pauli sx matrix on the axially symmetric
(antisymmetric) mth encoded qubit. Similarly, Tz

m �Rz
m�

acts as sz . Therefore pairs of these operators each gener-
ate an “encoded SU�2�” group on the logical qubits, i.e.,
the group of all single-encoded-qubit operations. More-
over, �Ta

m , R
b
m	 � 0 (in agreement with the decoupling of

the symmetric and antisymmetric subspaces), so that these
single-encoded-qubit operations can be implemented in
classical parallelism. Let us now momentarily assume
that we have independent control over all parameters
�e6

m , J6
ij , Jz

ij�. Below, we will relax this constraint by
using selective recoupling. In order to implement single-
encoded-qubit operations, we turn on the interactions J6

m
and the energy sums and differences e6

m , while leaving
off the interactions between spins belonging to different
encoded qubits (i.e., Ja

2m,2m11 � 0), as well as leaving
all Jz

ij off. We can then rewrite the total Hamiltonian
H � H0 1 Hex as

H �
N�2X

m�1
�e2

m Tz
m 1 J1

m Tx
m� 1 �e1

m Rz
m 1 J2

m Rx
m� , (3)

while omitting a constant term. Written in this form, it
is clear that by selectively turning on/off the parameters
e2

m , J1
m �e1

m ,J2
m � for the axially symmetric (antisymmetric)

qubit, one can implement all single-encoded-qubit opera-
tions, by using Euler angle rotations to generate the en-
coded SU�2� group. Moreover, H is expressed as a sum
over terms acting on different encoded qubits, so that all
N�2 encoded qubits (of a given symmetry) can be opera-
ted on independently. In other words, the encoded Hilbert
space has a tensor product structure.

To complete the general discussion, we must also show
how to couple different encoded qubits through a nontrivial
(entangling) gate. For the XXZ model, this turns out to be
even simpler than implementing single-encoded-qubit op-
erations. Turning on the coupling Jz

2m,2m11 between pairs
of spins belonging to two neighboring encoded qubits im-
mediately implements the encoded 2Tz

mTz
m11 �Rz

mRz
m11�

Hamiltonian on the axially symmetric (antisymmetric)
017905-2
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qubits. To see this, note that in the axially symmetric case,

e.g., j0L�1j0L�2 � j01�12j01�34
sz

2sz
3

! 2j01�12j01�34 �
2j0L�1j0L�2, and similarly for the other three combi-
nations: j0L� j1L� ! j0L� j1L�, j1L� j0L� ! j1L� j0L�,
j1L� j1L� ! 2j1L� j1L� so that in all s

z
2s

z
3 indeed acts

as 2Tz
1 Tz

2 . Since, as is well known [19], the CPHASE
gate is directly obtainable by turning on the Hamiltonian
sz ≠ sz between physical qubits, in our case turning on
Jz

2m,2m11 yields a CPHASE gate between encoded qubits.
We consider the XY model below, since it requires the
introduction of the selective recoupling method. For
the XXZ model, this encoded CPHASE together with
the single-encoded-qubit operations suffice to perform
encoded universal quantum computation [20].

Recoupling and encoding recoupling.—Recall that, as
discussed above, in each instance of Hex (Heisenberg, XY ,
XXZ) one typically has control over only one type of pa-
rameter out of the set �Ja

ij , ´i�. In our treatment above, we
made liberal use of all parameters, and it is now time to
relax this assumption. To show this, we now demonstrate
how selective recoupling, applied to our encoded qubits,
provides the requisite flexibility. Let us first briefly recall
the basic idea of selective recoupling [16] through a simple
NMR example. In a two-spin molecule in NMR, the inter-
nal Hamiltonian is HNMR �

P2
i�1 ´is

z
i 1 Jz

12s
z
1s

z
2 with

uncontrollable parameters ´i, Jz
12. However, control over

´i is needed to implement z-axis rotations, while control
over Jz

12 is needed to implement a CPHASE. This is done
by pulsing an external magnetic field along the x axis.
Let A and B be anticommuting Hermitian operators where
A2 � I (I is the identity matrix). Then the operation of
“conjugating by A,”

CA ± exp�iB� � exp�2iAp�2� exp�iB� exp�iAp�2�

� exp�2iB� , (4)

causes B’s sign to be flipped. Thus, exp�2iHNMRt� 3

�Csx
1
± exp�2iHNMRt�	 � exp�22it´2s

z
2	, which im-

plements a rotation through an angle u � 2t´2 about the
z axis of the second spin. Notably, the Ising coupling term
s

z
1s

z
2 has been eliminated. A similar calculation reveals

that exp�2iHNMRt� �Cs
x
2
± Cs

x
1
± exp�2iHNMRt�	 �

exp�22itJz
12s

z
1s

z
2 	, i.e., the selective implementation of

the Ising coupling term through an angle tJz
12. Notice that

to achieve this effect all that was needed was control over
the parameters turning on/off the s

x
i terms. Physically,

the reason that HNMR was neglected during the p�2 rota-
tions is that typically in NMR the s

x
i terms can be made

much larger than HNMR. Selective recoupling methods
can be extended to deal with any number of spins coupled
through an NMR-type Hamiltonian, and efficient methods
using Hadamard matrices have been developed for both
homonuclear [21] and heteronuclear systems [22,23].

Consider now an XXZ-type Hamiltonian where the J1
m

parameters are controllable but e2
m and Jz

m are fixed.
As argued above, this is a model of the XY examples
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of QC proposals [11–14] that takes certain symmetry-
breaking mechanisms into account. We can now map the
selective recoupling method directly onto our problem.
For simplicity, let us consider just the axially symmetric
case. Then we can rewrite H � H0 1 Hex as HAX �PN�2

m�1 e2
m Tz

m 2 Jz
mTz

mTz
m11 1 J1

m Tx
m, where we have

omitted a constant term. The important point is now
that Tx

m and Tz
m satisfy the properties required of A and

B above, on the code subspace. In fact, the structure
of HAX is exactly analogous to that of HNMR, the only
difference being that the T operators act on encoded
qubits as opposed to directly on physical spins. Hence,
the argument that held for HNMR holds here as well: By
using recoupling through “conjugation by Tx

m” we can
selectively turn on and off the single-encoded-qubit rota-
tion Tz

m and the encoded-Ising interaction Tz
mTz

m11. This
example of “encoded selective recoupling” establishes
that encoded universal computation in the XXZ model can
be done using control over the J1

m parameters alone.
Next, consider the XY model, i.e., the idealized version

of the proposals in [11–14], with controllable J1
ij , but fixed

´i. We still use the encoding j0L� � j"#�, j1L� � j#"�. To
implement encoded single-qubit operations, we can use the
same encoded recoupling method as for the XXZ model.
As for encoded two-qubit operations, we now no longer
have the s

z
i s

z
j terms. Since the XY model with nearest

neighbor interactions can be shown not to be universal
[17], we turn on also next-nearest neighbor J1

ij terms (these
can still be nearest neighbor in a 2D hexagonal geometry).
First note that CT x

12
± Tx

23 � isz
1s

z
2Tx

13. Now assume we
can control J1

13; then, using conjugation by p�4, C 1

2
Tx

13
±

�CTx
12
± Tx

23� � s
z
2 �sz

3 2 s
z
1 ��2. Since s

z
1s

z
2 is constant

on the code subspace it can be ignored. On the other
hand, s

z
2s

z
3 again acts as 2Tz

1 Tz
2 , i.e., as an encoded sz ≠

sz . This establishes universal encoded computation in the
XY model.

Cost.—Let us now count how many elementary steps
are needed to implement the various quantum computing
primitives in the XXZ model. We define such a step as
a single pulse whereby a single Ja

ij is switched on and
then off. We will assume only the least demanding ar-
chitecture of nearest neighbor interactions and a 1D lay-
out of spins. Improvements are certainly possible with
next-nearest neighbor interactions and/or a 2D geometry.
For single-encoded-qubit operations, it takes one step to
turn on a rotation about the encoded x axis (under the stan-
dard assumption that we can make jJ1

m j ¿ je2
m j, jJz

mj),
while it takes four steps to implement a rotation about the
encoded z axis (turn on Tx

m for p�2, free evolution under
e2

m Tz
m 2 Jz

mTz
mTz

m11, repeat with Tx
m for 2p�2). There-

fore using the standard Euler angle construction it takes at
most six steps to implement any single-encoded-qubit ro-
tation. The encoded CPHASE operation is similar: If we
assume that Tx

m and Tx
m11 can be turned on in parallel, then

the same count of four steps as for encoded z axis rotations
applies; otherwise we need to add two more operations, for
017905-3
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a total of six steps. In the XY case the implementation of
CPHASE given above takes five steps.

Encoded recoupling for the Heisenberg case.—
Elimination of single-qubit operations in the isotropic ex-
change case was first shown in [3], and further developed
in [4–6]. With a fully degenerate H0 this required encod-
ing one qubit into three. We now show how to simplify this
encoding, assuming a nondegenerate H0. Our code is the
same as for the axially symmetric case above, and the same
as that used in [8,9], but our method is less stringent. Ref-
erence [8] used spin-resonance techniques, with the rather
demanding requirement that the spin-spin interaction
strength be modulated at high frequency. Reference [9]
showed how universal computation can be performed
by varying the strength of the exchange coupling using
nonoscillatory pulses. This scheme is very much in the
spirit of our solution, but it has the problem of undesired
spin rotations taking place while the interaction is off.
We solve this problem here using the selective recoupling
method. Let us write the total Hamiltonian as H �
H0 1 HHeis, where HHeis �

P
i,j Jij�Tx

ij 1
1
2s

z
i s

z
j �

with 1
2J1

ij � Jx
ij � J

y
ij � Jz

ij � Jij. The exchange cou-
pling parameters Jij are assumed to be controllable,
while H0 is not (except by application of a global
magnetic field). Therefore, similar to the anisotropic
case, when we turn on Jm � J2m21,2m the Hamiltonian

can be written as HHeis �
PN�2

m�1�e2
m Tz

m 1 JmTx
m� 1 D,

where D �
PN�2

m�1�e1
m Rz

m 1
Jm

2 s
z
2m21s

z
2m� acts trivially

on the code space and, hence, can be omitted. By
recoupling using Tx

m, we can selectively turn on and
off the single-encoded-qubit rotation Tz

m, as above, thus
generating the encoded-SU�2� group only on the desired
encoded qubit. Next, let us show how to selectively turn
on a two-qubit Hamiltonian such as Tz

1 Tz
2 � s

z
2s

z
3 . If we

directly turn on h23 � J23
P

a�x,y,z s
a
2 s

a
3 , the encoded

space will leak. Recoupling can extract the s
z
2s

z
3 term as

follows. First, note that CTx
1
± e2ipTz

1 �2 � eipTz
1 �2, and

CTz
1
± h23 � J23�2s

x
2 s

x
3 2 s

y
2 s

y
3 1 s

z
2s

z
3 �. Hence,

e2ih23t�2CTz
1
± e2ih23t�2 � e2iJ23s

z
2s

z
3 t , so that Tz

1 Tz
2 may

be implemented selectively using six steps, which com-
pletes the requirements for universal computation. It
is interesting to contrast these results with the 19 steps
required in serial mode for the analogous operation in
the isotropic case, assuming fully degenerate H0 (seven
steps are required in parallel mode in 2D) [6]. As a
final comment, note that the code we used here is a
decoherence-free subspace (DFS) and thus offers auto-
matic protection against collective dephasing errors [4],
as recently demonstrated in an ion trap experiment [24].
When other errors are present, one may use the method of
concatenating DFSs with quantum error correcting codes
[25], at the price of introducing greater qubit overhead,
or use a combination of recoupling and decoupling
techniques [26].

Conclusions.—The requirement of performing both
single- and two-qubit operations in one quantum comput-
017905-4
ing device often leads to severe technical constraints and
difficulties. We have shown here that selective recoupling,
as applied to encoded qubits, is a very general method
to overcome these problems. It allows all quantum logic
operations to be performed by turning on/off pairwise
exchange interactions. The trade-off is modest: A qubit
is encoded into the state of two neighboring spins, and
universal quantum logic gates require only 4–6 interac-
tions to be turned on/off in a simple 1D geometry with
nearest neighbor coupling. We believe that this alternative
to the hard requirements of quantum computing with
single-qubit gates may substantially simplify the design
of quantum computers.
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