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Barkhausen Noise in a Relaxor Ferroelectric
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Barkhausen noise, including both periodic and aperiodic components, is found in and near the relaxor
regime of a familiar relaxor ferroelectric, PbMg1�3Nb2�3O3, driven by a periodic electric field. The
temperature dependences of both the amplitude and spectral form show that the size of the coherent
changes in the dipole moment shrink as the relaxor regime is entered, contrary to expectations based on
some simple models.
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Although relaxor ferroelectrics form locally ferroelectric
polar nanodomains, underlying chemical disorder some-
how prevents the formation of long-range ferroelectric or
antiferroelectric order [1]. Instead, there is a crossover,
characterized by faster-than-Arrhenius temperature depen-
dence of relaxation rates (approximately of the Vogel-
Fulcher form, e.g., [2]), to a glassy “relaxor” regime. The
key ingredients of a successful model may include static
random polar fields (e.g., [3]), random anisotropy (e.g.,
[4]), random interactions among the polar nanodomains
(e.g., [4–7]), and interactions with soft TO phonons [7–9]
and slow charge-transfer modes [9].

Nonequilibrium noise and mesoscopic noise provide
model-sensitive probes of glassy freezing [10,11], unlike
macroscopic linear response and the corresponding equi-
librium fluctuations, which show rather generic properties.
The Barkhausen effect (see, e.g., [12]) arises because the
polarization changes unevenly as an applied field changes,
with the random part of the response only statistically
similar between nominally identical samples. For two
materials with similar average response functions, the
Barkhausen noise will be larger for the material whose
polarization makes larger coherent changes.

Although simple pictures of interacting polar nano-
domains would predict that the dynamically coherent
units grow as the frozen regime is entered, a previous
attempt to find Barkhausen noise in the relaxor regime
found none, setting an upper limit on the cooperative
changes of the dipole moment [11]. Large discrete steps
in polar order have been found in the best-studied relaxor,
PbMg1�3Nb2�3O3 (PMN), but only after the applied
dc electric field was large enough to drive the material
into an ordinary ferroelectric regime with macroscopic
domains [3]. Here we report Barkhausen noise in the non-
ferroelectric (paraelectric and relaxor) regimes of PMN,
where conventional Barkhausen noise from macroscopic
domains is absent.

The simplest Barkhausen model [13] consists of a set of
polarization steps at fixed fields distributed with uniform
probability over the field sweep range. For periodically
driven fields, the noise consists of a periodically repeated
random walk, so S� f�, the Fourier power spectral density
of the voltage fluctuations, will consist only of harmonics
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of the driving frequency fD , and its spectral envelope will
decay as 1�f2. If the step pattern changes between cycles
(e.g., due to thermal jitter in the step times) then there will
be aperiodic noise too. For fast-relaxing domains which
remain in quasiequilibrium as the field changes, the po-
larization steps follow the smooth change in Boltzmann
factor vs time (on a coarse time scale), causing the 1�f2

envelope to cut off rapidly �csch2�pf�fC �� above a char-
acteristic frequency fC [11]:

fC � fD
pED

kBT
. (1)

(Here ED is the maximum amplitude of the sinusoidal driv-
ing field, p is the typical change in electric dipole moment
in a single step, and kB is Boltzmann’s constant.) For do-
mains with large barriers to switching, the switches occur
as single abrupt steps. However, thermal jitter in the timing
of otherwise reproducible steps also reduces the periodic
component above fC, with a (numerically computed) enve-
lope very similar to that for the fast switchers. The missing
harmonic power should appear as an aperiodic component
of roughly Lorentzian shape and corner frequency compa-
rable to fC.

When this simple independent-step picture applies, the
voltage variance [the integral of S� f�] will grow linearly
with ED (so long as fC ¿ fD), being [11]

��dV �2� 	
pED

´Co
. (2)

Here Co is the geometrical capacitance, and we assume the
dimensionless dielectric constant ´ ¿ 1. When there is a
range of p’s, p in Eq. (2) is replaced by �p2���p�.

Generically, if the non-Arrhenius slowing down of re-
laxation rates arises because interacting nanodomains form
clusters which reorient coherently but with barriers which
increase with cluster size (e.g., as in the random-field Ising
model [14]), then the dipole moments of the coherent clus-
ters (even if the constituents are randomly aligned) would
grow as T was reduced, causing ��dV�2� and fC to rise.
If the activation barrier heights for some clusters become
too large for them to respond at or near fD for a given
ED , then the typical p would saturate near the moment
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of the largest responding clusters. The size of the largest
responding cluster would shrink slightly as T is reduced
further, but only as T to a power less than 1. We found
neither continued growth nor approximate saturation of the
noise magnitude and frequency range, but instead abrupt
shrinkage.

Our sample consisted of two pieces, each about
0.75 mm thick, from a single crystal of PMN, grown by
the Chokhralsky method at the Rostov-on-Don Institute
of Physics. The sputtered gold contact pads on the main
(001) faces had about 1 mm2 surface area each.

Standard ac susceptibility measurements at 50 Hz
showed the usual PMN relaxor behavior, as shown in
Fig. 1. The response was close enough to linear over the
field range employed in the noise experiments for the lin-
ear susceptibility to suffice for approximate calculations.
Previous experiments [15] have shown that the apparent
Vogel-Fulcher freezing temperature of PMN (	220 K)
determined by ac response is essentially unchanged over
the field range used in these experiments, although it
drops sharply at higher fields.

For the noise measurements, the two halves of the
sample were incorporated in a balanced-bridge circuit,
as shown in Fig. 2. This setup allowed us to apply an ac
bias up to 10 V on each half of the sample without over-
loading the low-noise amplifiers, despite the generation of
harmonics by the sample nonlinearity, slow capacitance
changes due to systematic aging effects [16], and imperfect
common-mode rejection. However, any residual system-
atic differences in the nonlinearity of the two parts would
generate harmonics. An experiment in which one sample
arm was replaced with a polystyrene capacitor indicated
significant systematic harmonics out to the fifth harmonic.
We avoided using harmonics lower than the tenth in the
data analysis, since systematic nonlinearities are distinct
from Barkhausen noise. The ac source has very low levels
of noise and distortion, and the analog-to-digital sampling
is synchronized well with the ac drive.

Figure 3 shows a typical S� f� with, roughly as ex-
pected, a mixture of periodic and broad aperiodic noise.

150 200 250 300 350 400
10-1

100

101

102

103

104

ε'
'·1

03

 T (K)

ε''
ε'

ε

0 20 40 60 80

3.0

3.5

4.0 T=300K

 E
D
 (V/cm)

 

FIG. 1. ´0�T � and ´00�T � at 50 Hz, measured at 13 V�cm. The
inset shows the nonlinear out-of-phase response, most apparent
at high-T where the linear out-of-phase response is tiny.
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The wings around fD (and to a lesser extent around low
harmonics) were not anticipated, but these can arise from
small drifts in the bridge cancellation as the sample ages.
The size of the polarization events, calculated below
from S� f�, was far too small for them to be discerned
individually.

Since the spectral form is close to the independent-step
expectation, we can extract a typical step size p, although
we doubt that the polarization changes literally consist of
simple discrete steps. As shown in Fig. 4, both periodic
and aperiodic components of the noise grow nonlinearly
with ED over the range explored. Thus the p calculated
at some ED gives only a typical dipole step size under the
particular drive conditions. The form of the nonlinearity
suggests a broad distribution of p’s, with many small p’s
showing up in the noise only as ED is increased enough
to make fC . fD for that p. The form of the aperiodic
spectrum indicates a similar distribution.

Although we are not yet confident in extracting absolute
step sizes from this new technique (mainly due to the dif-
ficulty of removing all artifacts from the lower harmonics,
which contain the most power), we can use Eq. (2) to cal-
culate a lower-bound estimate for a typical p by integrating
the broad aperiodic spectrum only. (We assume this p re-
flects about how big the cooperative changes are regardless
of whether they are simple discrete steps.) At T � 250 K,
just above the relaxor regime, at the largest ED used, the
result is about p � 2 3 10222 C cm, which apparently
would grow at higher ED . Under the same conditions, the
envelope of the harmonic noise has a 1�f2 tail extending
from about 1 to 4 kHz, the top of our measured range, indi-
cating that there are some discrete dipole switches as large
as 2 3 10221 C cm. An order-of-magnitude estimate of
the moment of a polar nanodomain at 250 K, based on the
range of the static polar correlations [17] and the satura-
tion polarization [18], would be about 3 3 10223 C cm.

FIG. 2. The schematic diagram of the Barkhausen measure-
ment circuit. A trimming capacitor in the balance circuit has
been omitted to avoid clutter. S1 and S2 are the sample halves.
6G is the gain of the driving op amps. Data were taken on the
14-bit converter in sets of 30 000 points with a 10 kHz sampling
rate, giving 1�3 Hz frequency bins in the Fourier spectrum. Usu-
ally 16 such spectra were averaged. The anti-alias filter corner
frequency was 5 kHz, although it should have been 4 kHz.
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FIG. 3. S� f� with ED � 130 V�cm at fD � 50 Hz at 244 K
(spectrum 2) is shown above a background (spectrum 1) con-
sisting of equilibrium noise from the dissipative sample plus
amplifier noise, mainly from current noise from the Stanford
550 preamp. The harmonics of 60 Hz have been edited out.

Thus it seems that even in the paraelectric regime there
are some dynamically coherent units larger than single po-
lar nanodomains.

Despite the uncertainties in the absolute calibration, we
can obtain a good indication of how typical p’s depend
on T , a key issue for relaxor models. For independent
steps, the quantity ´0 �dV �2 is proportional to the actual p’s
under particular experimental conditions. Figure 5 shows
how some periodic and aperiodic components of ´0 �dV �2

depend on T at fixed ED . We pick spectral components
in an octave around f � 15fD , because in this range the
signal-to-background is still good, we expect few artifacts
in the harmonics, and the T dependence of p shows up
in S� f� both via the overall magnitude and via the T
dependence of fC. (Other frequency components show the
same sort of behavior, just less clearly.)

As seen in Fig. 5, as the relaxor regime is approached
from high T , the spectral components of ´0 �dV �2 either
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FIG. 4. Noise power (above the relevant backgrounds) in the
octave from 512 to 1024 Hz as a function of ED for (a) aperiodic
and (b) periodic components.
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rise slowly, as one would guess from the growth of
medium-range static correlations [17], or show little
change. However, below 235 to 250 K, both periodic and
aperiodic components drop sharply, in sharp contrast to the
continued growth of static correlations. The factor ´0�T�
accounts for less than half of this drop.

The width of the envelope of the harmonic components
is also T dependent, being largest (for ED � 110 V�cm)
at 250 K. In contrast to the long 1�f2 tail at 250 K, below
250 K the harmonics fell sharply into the anharmonic
background, e.g., becoming undetectable above about
900 Hz at 210 K, confirming that the largest dipole
moment steps occur near 250 K.

In summary, our noise results indicate abrupt shrinkage
of the typical net dipole moment of the dynamically coher-
ent changes (at fixed driving field) as the relaxor regime is
entered. We do not want to burden this experimental re-
sult with much theory, but some initial comments should
be helpful.

We know of no proposed model in which the coher-
ent dipole moment differences between the equilibrium
states at different fields would shrink sharply in the relaxor
regime (i.e., relaxors are not believed to be frustrated an-
tiferroelectrics). Rather, the shrinkage of the steps found
on a fixed frequency scale should be related to the Vogel-
Fulcher kinetics [2,7], i.e., to the rapid growth of barrier
heights as the relaxor regime is approached. Although our
results do not dictate a model for the relaxor transition in
PMN, we can rule out some models.

A model of the dynamics with a fixed set of relaxation
modes with a fixed broad unimodal distribution of activa-
tion barriers (presumably monotonically increasing in p)
[19] would predict that the characteristic p is a weakly in-
creasing function of T at all T , and hence is inconsistent
with our results. For simple growth of independent polar
nanodomains, the dipoles grow along with the anisotropy
barriers, so the typical dipole moment for which the field
(plus thermal activation) allows switches at rates of order
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FIG. 5. The magnitudes of periodic and aperiodic spectral
components (above the relevant backgrounds) in the range
512 to 1024 Hz, weighted by ´0�T �, are shown vs T at two
different ED .
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fC would continue to grow. For formation of coherently
flipping clusters, the typical moment also grows with the
number of nanodomains (probably as a square root). Al-
though the moment to barrier ratio would be lower for
larger clusters, the moment of the largest clusters with
rapid enough driven kinetics would approximately saturate.
Unless there was a strange distribution of cluster sizes, so
that as the typical size grew, the mean of those remaining
below some fixed cutoff would shrink, such models would
not reproduce our results.

Thus the Barkhausen results strongly suggest that the
rapid growth of barriers is not just the result of nanodomain
growth or of collective nanodomain clusters forming. In-
stead, it seems that each nanodomain’s contribution to the
barriers grows much more rapidly than its contribution to
the dipole moment, as in a recent phenomenological model
[7], suggesting that less-polar degrees of freedom are freez-
ing along with the polar nanodomain orientations. Another
indication of some such effects is that the low-temperature
linear heat capacity specifically associated with the re-
laxor [20] gives a dimensionless entropy of about 103 per
nanodomain.

Models of relaxor freezing invoking strong coupling of
nanodomain polarization to multiple slow local degrees
of freedom (particularly charge transfers) and to soft TO
phonon modes [8] have been proposed to account for clus-
ters with multiple metastable polarization states having a
roughly uniform distribution in solid angle [9]. Such mod-
els would allow complex aging [16] even in small clus-
ters of nanodomains. Whether or not such models prove
successful, the Barkhausen data provide a new qualitative
constraint on models for the relaxor transition, which has
thus far provided a target for somewhat underconstrained
theory.
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