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There is a soliton in a superconductor having two bands (two-band superconductor), when the in-
terband interaction is much smaller than the intraband interaction. This soliton is in a stable state. In
the soliton the relative phase between two gap parameters rotates 0 to 2p (or 2p to p), where each
gap resides in each band. A phase slip of the superconducting order parameter is accompanied with
the soliton. The phase slip is not n 3 2p where n is an integer. A soliton traps the flux inside the
superconducting ring, of which magnitude is not integral multiples of the fluxoid quantum.
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Recently it was pointed out that multiple bands are
essential to achieve high Tc in some superconductors
having multiple bands (multiband superconductor) [1,2].
In a previous paper, I pointed out that a soliton trapped by
a Josephson junction gave one of the clearest hallmarks
of the multiband superconductor [3]. In that paper, I
discussed the soliton of the ground state. In this Letter, I
discuss that this soliton can be present without a Josephson
junction as a stable state using a one-dimensional
Ginzburg-Landau model.

Let us consider a superconductor having two bands
(two-band superconductor) [4–17]. In this superconductor
the pair in each band has its own phase and amplitude. I
introduce a pseudo-order parameter c1, c2 defined as fol-
lows [18]:

c1 �
p

N1 exp�iu1� ,

c2 �
p

N2 exp�iu2� .
(1)

Nn and un are the density of the pair and its phase on the
band indexed by n. This pseudoparameter can describe the
superconducting state having four internal freedoms (N1,
u1, N2, and u2). It is provided that

p
N1 and

p
N2 are real

positive numbers.
Based on the Ginzburg-Landau model, I used Gibbs

free energy density in the two-band superconductor for a
one-dimensional case as follows [3,8,14,]:
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where x is a coordinate and mn is the mass of the pair.
I assumed there was no external field. The interband in-
teraction corresponds to g�cy

1 c2 1 c
y
2 c1�. g specifies

the strength of the interband interaction. When it is posi-
tive, the relative phase of c1 and c2 is p, in other words,
c1 3 c2 , 0. When it is negative, the relative phase of
c1 and c2 is 0; in other words, c1 3 c2 . 0.

The Josephson junction has a chance to trap a soliton
only when c1 3 c2 , 0 is satisfied. However, there is
1 0031-9007�02�88(1)�017002(3)$15.00
a soliton as a stable state in both cases when the thermal
fluctuation and the quantum fluctuation are small.

When the intraband interaction is much larger than the
interband interaction,

p
Nn is specified with the intraband

interaction. The role of the small interband interaction
is for specifying the relative phase between two pseudo-
order parameters. In this situation I take an approximation
that

p
Nn is independent of the coordinate and =

p
Nn �

0. In this approximation, free energy can be described
as follows:
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(3)

When no supercurrent flows anywhere in the real space
(Je �

P
n�1,2

e h̄Nn

mn
=xun � 0), I obtain u2 � 2

N1m2

N2m1
u1

for g , 0 and u2 � p 2
N1m2

N2m1
u1 for g . 0. By intro-

ducing w � u1 2 u2 for g , 0 and w � u1 2 u2 1 p

for g . 0, I minimize the free energy with respect to w

(dg � 0). The equation obtained is sine-Gordon [3]:

1
m0

�
N1N2

m1N2 1 m2N1
,

1
L2 � 2

jgj

h̄2

p
N1N2 m0 ,

≠2w

≠x2 2
1
L2 sinw � 0 .

(4)

A trivial solution is w � 0 which is the ground state.
The other local minimum gives a soliton, as shown in
Fig. 1. The relative phase rotates from 0 to 2p for g , 0
and 2p to p for g . 0. The energy of one soliton
(Esoliton) can be calculated by subtracting the energy of
the system without a soliton from that with one soliton,
© 2001 The American Physical Society 017002-1
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FIG. 1. Soliton in two-band superconductor. Relative phase
between two pseudoparameters is depicted.

Esoliton � 8
p

2h̄ 4
p

N1N2

s
jgj

m0
. (5)

Figure 2 shows the schematic description of the soliton.
I show c1 and c2 in the complex plane. As shown in
Fig. 2, one can see the phase of the total order parameter
slips at the soliton, and its magnitude is Qsoliton �

62p

11 m2N1
m1N2

.

Leggett discussed the fluctuation of d�u1 2 u2� in 1966
[19–21]. According to his model, the fluctuation is limited
within a small value. Therefore it is treated in terms of a
harmonic oscillator. When this fluctuation grows to the
nonlinear region and is stabilized, it becomes the soliton
deduced in this Letter.

When I connect x` to x2` in Fig. 1, I can make a ring.
For a boundary condition, the phase slip due to the soliton
should be compensated by the supercurrent. I replace un

with un 2
e
h̄ A, where A is the vector potential [22]. In

this case Je � JeA 1 Jesoliton, JeA � 2e2A� N1

m1
1

N2

m2
�,
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P
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in other words, there may be only a constant circulat-
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FIG. 2. Schematic diagram of the relative phase between two pseudo-order parameters in several slices at location specified xi . xi is
labeled in Fig. 1.
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ing supercurrent coming from the vector potential. (If
Jesoliton fi 0, there would be a source and a sink of the
supercurrent in the soliton. This situation is nonphysi-
cal.) Even if there is an offset due to the kinetic energy
of this supercurrent, the soliton still gives a local mini-
mum of the free energy [23]. The boundary condition
is

R
=xun dx 2

R e
h̄ A dx � 2np, where n is an integer.

The induced flux inside the ring, F, by the supercurrent isR
A dx � � 2Qsoliton

2p 1 n�F0, where F0 is fluxoid quantum.
The amount of the self-induced flux inside the ring teaches
us the number of solitons. (Strictly speaking, the number
of antisolitons should be subtracted.) This fractional flux
can be understood by the analogy of the half-flux quanta
trapped by the grain boundary junction of the d-wave su-
perconductor, where a crystallographic misalignment ro-
tates the phase of the order parameter instead of the soliton
[24–29].

The cuprate having more than two CuO2 planes in a
unit cell is one of the feasible examples of the multi-
band superconductor. We can tune the interband inter-
action by the doping level [30]. One of the candidates
is CuxBa2Ca3Cu4Oy (Cu-1234) [31–34]. It has multiple
bands and two crystallographically nonequivalent CuO2

planes [35,36]. The doping level can be varied [37–39].
The specific heat and NMR studies suggest that the inter-
band interaction is very weak [40–44]. By tuning the dop-
ing level, we can control the energy of the soliton through
the interband interaction. When we quench the supercon-
ducting ring, thermally activated solitons may be quenched
and survive at low temperatures against the thermal agita-
tion. We can measure the self-induced flux inside the ring
even with a time-consuming technique. By an instanta-
neous measurement of the total flux inside the ring, the
steplike signal accompanied by the creation (or destruc-
tion) of the soliton can be observed when there is a fluctua-
tion having a certain magnitude. By applying the magnetic
field, we may generate a surviving soliton after releasing
the field when a soliton is stable enough to survive against
any fluctuation [45–48].
017002-2
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In this Letter, I do not discuss the dynamics of the soliton
in the mixed state of a type-II superconductor. That is a
further problem.

In conclusion, there is a soliton in the two-band su-
perconductor. It is a hallmark of the multiband super-
conductor.
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