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Quantum Phase Transition in a Multilevel Dot
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We discuss electronic transport through a lateral quantum dot close to the singlet-triplet degeneracy
in the case of a single conduction channel per lead. By applying the numerical renormalization group,
we obtain rigorous results for the linear conductance and the density of states. A new quantum phase
transition of the Kosterlitz-Thouless–type is found, with an exponentially small energy scale T � close
to the degeneracy point. Below T �, the conductance is strongly suppressed, corresponding to a universal
dip in the density of states. This explains recent transport measurements.
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Introduction.— In the past few years semiconductor
quantum dots have gained considerable attention as tunable
magnetic impurities [1]. Because of their small size elec-
tronic transport is strongly influenced by Coulomb blockade
[2]. A well-known many-body phenomenon, the Kondo
effect, was found in quantum dots [3] with an odd electron
number, as predicted earlier [4]. In these systems, a single
unpaired spin is screened at low temperatures, giving rise
to an enhanced conductance at low bias.

Remarkably, a similar conductance enhancement was re-
cently also observed for an even number of electrons both
in vertical [5] and lateral [6] GaAs quantum dots. This can
be understood by taking into account the strong intradot
electronic exchange coupling [7] which is ferromagnetic,
similar to Hund’s rule in atomic physics. Tuning of the
level spacing by an external magnetic field then induces a
singlet-triplet transition in the ground state. This additional
degeneracy leads to the enhanced conductance at low tem-
perature [8–10].

Model calculations for the singlet-triplet transition, ex-
cept [10], have so far mainly considered the case where the
orbital quantum number characterizing the levels in the dot
is also present in the leads. In particular, two conduction
channels per lead have been taken into account. While this
is appropriate for vertical devices [5], recent measurements
on lateral quantum dots [11] suggest an interpretation in
terms of a single conduction channel per lead, i.e., strong
orbital mixing. In the following, we focus on this situation.

Our main tool of analysis is Wilson’s numerical renor-
malization group (NRG) [12], a nonperturbative approach
to quantum impurity systems. In contrast to mean-field
or scaling calculations, this method does not rely on any
assumptions regarding the ground state or leading diver-
gent couplings. We find that this is crucial in the present
analysis.

The model.—We consider a two-level Anderson impu-
rity model as shown in Fig. 1. The Hamiltonian H � HL 1

HR 1 HD 1 HT contains two leads Hr �
P

kr ekra
y
ksraksr

with r � L�R. The isolated dot is described by
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where n � 1, 2 denotes the two levels, N �
P
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is the total number of electrons occupying the dot, and
Sn � �1�2�

P
ss0 dy

nssss 0dns 0 are the spins of the two
levels. Furthermore, we have introduced the charging en-
ergy EC and an exchange coupling J which arises due
to Hund’s rule. We choose N � 2 in order to achieve
double occupancy of the dot. Through the energies edn

the level spacing De � ed1 2 ed2 as well as the pre-
cise position in the Coulomb blockade valley can be tuned.
Experimentally, N depends on the gate voltage, while
De is controlled by an external magnetic field. As a con-
sequence of Hund’s rule, the intradot exchange is ferro-
magnetic (J , 0). Therefore, for De � 2J�4 the three
triplet configurations j1, 1� � d
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2#j0� are degenerate. Motivated by the small

g-factor in GaAs [5], we neglect the Zeeman splitting of
the triplet states.

Finally, tunneling between the dot and leads is modeled
by HT �

P
ksnr�Vnra

y
ksdns 1 H.c.� where we neglect

the energy dependence of the tunneling matrix elements

FIG. 1. Two-level quantum dot (1) with single-channel leads
(chemical potentials mL and mR). V denotes the tunneling ma-
trix element between the dot levels and the leads.
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Vnr and in the following take them to be symmetric and
identical for both levels; that is, Vnr � V . The intrinsic
linewidth of the dot levels due to tunnel coupling to the
leads is G � GL 1 GR with GL�R � 2p jV j2NL�R, where
NL�R is the density of states in the leads. This model has
been studied before [13] without discovering the quantum
phase transition we describe in this Letter.

Transmission probability.— We are interested in calcu-
lating electronic transport through the dot (1) close to the
singlet-triplet transition. To this end, we use the general-
ized Landauer formula [14]

I �
2e
h

Z
dv � f�v 2 mL� 2 f�v 2 mR��T �v� (2)

with the Fermi function f�v� and the transmission
coefficient

T �v� � 2
X

n,n0,s

GLGR

GL 1 GR
ImGnn0s�v� . (3)

Here we have introduced the retarded dot Green’s func-
tions Gnn0s�t� � 2iu�t� ��dns�t�, d

y
n0s	�. In the follow-

ing we focus on the low bias regime, where T �v� can be
evaluated in equilibrium, using the numerical renormaliza-
tion group. For a detailed description of this technique, see
Ref. [12]. Note that the equilibrium transmission T �v�
also yields an approximation to the differential conduc-
tance dI�dV at finite bias.

In Fig. 2 we show results for the transmission as a func-
tion of the level spacing De, corresponding to a variation
of the external magnetic field in the experiment. Our unit
is the half bandwidth D of the conduction electrons. For
De�D & 0.5, both orbitals are equally occupied and the
dot is in a triplet state (S � 1). Because of the hybridiza-
tion with the leads, this local spin is partially screened,

−1 −0.5 0 0.5 1 1.5
ω/D

0

0.2

0.4

0.6

0.8

1

T
(ω

)

∆ε/D=0.3
0.55
0.6
0.7

−0.2 0 0.2 0.4
0.4

0.8

1.2

1.6

FIG. 2. Transmission coefficient at zero temperature for dif-
ferent level spacings De � ed1 2 ed2 at N � 2, EC�D � 1,
ed1�D � 1, G � 0.57D, and J�D � 22. The bandwidth is
given by 2D. Inset: For comparison, we show the transmission
in the case of two conduction channels per lead, identical dot pa-
rameters, G � 0.28D and De�D � 0.4, 0.5, 0.55, 0.6,0.7 (from
top to bottom).
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giving rise to the Kondo resonance shown in Fig. 2 for
De�D � 0.3. Note the unusual shape of this peak, which
is due to the “underscreening” of the local moment —a free
spin 1�2 remains present in the ground state [15] and leads
to logarithmic corrections to Fermi-liquid behavior. Never-
theless, as for the spin 1�2 Kondo effect, the transmission
reaches the unitary limit at low temperatures. Because of
systematic numerical errors in the NRG calculation, this
limit is underestimated by about 10%.

In the regime De�D * 0.5, both electrons occupy the
lower dot level and the ground state is a singlet. Remark-
ably, in this case a pronounced dip arises within the Kondo
peak, leading to a strongly reduced transmission at low en-
ergy. The residual value T�0� is independent of De and is
determined by the position in the Coulomb blockade val-
ley. In particular, it vanishes in the center of the valley
where ed1 � 2ed2.

In order to demonstrate clearly the importance of the
number of conductance channels, we show results for the
case of two transmission channels onto the dot (1) in the in-
set in Fig. 2. In this case, the local spin is always com-
pletely screened by the leads. One obtains a conventional
Zeeman-type splitting of the conductance peak due to the
energy difference between singlet and triplet. The sharp
dip described above does not occur here and is thus char-
acteristic for the single channel situation.

We find that for small level spacing the dip has a uni-
versal scaling form which is completely determined by its
width v�. This can be seen more clearly in Fig. 3, where
we focus on the singlet side close to the transition. The
scaling curve is extracted in the inset.

Linear conductance.—Using the current formula (2),
we now determine the behavior of the conductance as a
function of temperature. Results are shown in Fig. 4. In
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FIG. 3. Scaling of the dip at zero temperature. Parameters are
chosen as in Fig. 2, but with a smaller broadening G � 0.25D.
Note the “pinning” of the transmission at v � 0. Inset:
Rescaled dip T �v�v�� for parameter values close to the
transition. The curves collapse onto a universal scaling function
with a single parameter v� (dip width).
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FIG. 4. Linear conductance for identical parameters as in
Fig. 3 in three different regimes: on the triplet side (De�D �
0.4, 0.46), at the transition �De�D � 0.487), and on the singlet
side (De�D � 0.49, 0.495).

the triplet regime, upon lowering of the temperature, the
conductance rises monotonously up to the unitary limit due
to the partial screening of the local spin S � 1. Note
that the associated Kondo temperature TK is extremely
low. This may be the reason why the triplet Kondo effect
has so far not been observed experimentally, though some
indications have been seen in Ref. [5]. Close to the singlet-
triplet transition, TK is strongly enhanced. On the singlet
side, we find a “bump”-type behavior of the conductance
when T is lowered: After an initial rise due to the Kondo
effect, G�T� decreases strongly at T & T�, with a small
residual value for T ! 0 determined by the position in
the Coulomb blockade valley. Note that, as the increase,
the decrease of G�T � is logarithmic, indicating a two-stage
Kondo effect. In particular, the T ! 0 behavior of G�T�
is again universal and can be characterized by a single fit
parameter T� 
 v�.

Quantum phase transition.—Here we present a physi-
cal explanation of the above results. It had been sug-
gested earlier [16] that the singlet-triplet degeneracy of the
dot can be parametrized in terms of a two-spin S � 1�2
Kondo model. Formally, this is achieved by performing a
Schrieffer-Wolff projection [17] of our two-level Anderson
Hamiltonian on the (almost) degenerate subspace spanned
by the four states j0, 0�, j1, 1�, j1, 0�, and j1, 21�. One ob-
tains an effective Hamiltonian of the following form:

Heff � HL 1 HR 1 J1S̃1s 1 J2S̃2s 1 IS̃1S̃2 , (4)

where both Kondo spins are coupled to the same conduc-
tion channel s � �1�2N �

P
kk0 a

y
kssss 0ak 0s . Here, N is

the number of k states in the leads and we have already
taken a symmetric combination of left and right leads ac-
cording to aks � �aksL 1 aksR��

p
2. Additional poten-

tial scattering terms have been neglected. Note that the S̃1,
S̃2 introduced above are fictitious spins, different from the
original levels.
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To leading order, the parameters in (4) are given by the
following expressions (note that V 
 1�

p
N):

J1�2� � 2NV 2
µ

1 7
p

2
ed1 1 EC 2 J�4

1
1

ed2 1 EC 2 J�4

2
1
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2

1 7
p
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∂

(5)
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1
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1
1
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2
2

ed2 2 EC

∂
1 De 1

J

4
. (6)

In particular, we find J1 fi J2. The effective direct ex-
change I will be a function of the level splitting De in the
original model.

The Hamiltonian (4) has been analyzed recently [18].
Depending on the strength of I, the ground state of the
two spins is either an interimpurity singlet or a triplet. The
associated transition at I � Icrit is of the Kosterlitz-
Thouless– type. The triplet side corresponds to an under-
screened S � 1 Kondo model, while on the singlet side,
a two-stage screening process of the two impurities has
been found for small DI � I 2 Icrit . 0. First, the larger
one of the two couplings (e.g., J1) leads to a screening
of the corresponding spin S̃1 by the Kondo effect, thus
decoupling S̃2 from the conduction band for T , TK .
The effective interimpurity exchange DI then leads to a
second Kondo effect for S̃2. At low temperatures, the two
spins form a singlet with a binding energy

T� 
 exp�2TK �DI� (7)

that is indeed exponentially small in the distance DI �
De 2 Decrit from the critical point. This argument holds
only as long as DI , TK . For larger values of the effective
exchange, DI provides a cutoff on the “first” Kondo effect
and the singlet binding energy is then linear, T� � DI, as
a function of the level splitting. In both cases, transport at
T , T� is strongly suppressed due to the singlet formation
which leads to the dip in the density of states.

In order to demonstrate that this is the correct low-
temperature scenario of the two-level quantum dot, we
have calculated the characteristic energy scale T� deter-
mined by the width of the dip. This calculation has been
performed for the full dot Hamiltonian (1). In Fig. 5,
we give T� as a function of the distance from the criti-
cal point. Clearly, for large jDe 2 Decritj the dip scales
linearly, while close to the critical point a crossover to an
exponential dependence occurs. Note that different level
broadenings lead to largely different Kondo temperatures;
in particular, for G�D � 0.063 only the linear behavior of
T � is seen because TK is extremely small.

At this point we point out the robustness of our re-
sults with respect to parameter changes in the model. We
016803-3
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FIG. 5. Scaling of the characteristic temperature scale T �

(width of the dip) versus the distance from the transition point
for EC�D � 1, ed1�D � 1, and J�D � 22.

have chosen our quantum dot to be at a generic position
in the Coulomb blockade valley, thus demonstrating that
the quantum phase transition and the suppression of low-
temperature transport discussed here are not restricted to
special situations like particle-hole symmetry. The dip is
also found when the broadening of the two levels is tuned
to different values and/or when an asymmetry between the
coupling to the right and the left lead is introduced.

Conclusion and experimental relevance.—Motivated by
recent experiments [11] we have studied transport through
a lateral quantum dot modeled by two levels close to the
Fermi surface coupled to a single conduction channel in
the leads. Correlations between different electrons in the
dot are taken into account via the charging energy and a
ferromagnetic exchange coupling due to Hund’s rule.

At the associated singlet-triplet degeneracy, we find a
quantum phase transition of the Kosterlitz-Thouless– type,
as in the two-impurity model [18]. On the triplet side of the
transition the conductance simply increases up to the uni-
tary limit upon lowering of T . On the singlet side, we find a
nonmonotonic behavior of the conductance as a function of
temperature (bump) corresponding to a characteristic “dip”
in the transmission, which is also expected to be seen in
the differential conductance. In particular, the width of the
dip represents a new low-energy scale— the singlet bind-
ing energy—which becomes exponentially small close to
the transition. For two conduction channels, none of the
two effects is observed.

These findings are in good agreement with recent con-
ductance measurements for a lateral quantum dot [11]
close to the singlet-triplet transition. In this system, orbital
symmetry is not conserved during tunneling. Both the non-
monotonic behavior of G�T� and the sharp dip in dI�dV
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have been observed, in contrast to previous studies of ver-
tical quantum dots [5].

We therefore conclude that the number of conduction
channels plays a crucial role for low-energy transport prop-
erties of a quantum dot. Symmetry and physical behavior
of such a device are thus strongly related.
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