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We emphasize the role of valleys in the transport properties of the dilute electron gas in Si-MOSFETs.
Close to the critical region of the metal-insulator transition the decrease in the resistivity up to 5 times
has been captured in the correct temperature interval by a renormalization group analysis of the interplay
of interaction and disorder. No adjustable parameters are involved in the analysis if the electron band is
assumed to have two distinct valleys. The considerable variance in the data obtained from Si-MOSFET
samples of different quality is attributed to the sample-dependent scattering rate across the two valleys,
while universal behavior is expected to hold when the intervalley scattering is negligible.
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The resistivity in a variety of high mobility two-
dimensional (2D) electron/hole systems is seen experi-
mentally to exhibit a number of interesting anomalies
that do not, as yet, have an adequate theoretical under-
standing. (For an extensive bibliography, see Ref. [1].)
The high quality of the samples allows measurements to
be made at very low carrier densities corresponding to
rs * 10, where rs � Ee-e�EF is the ratio of the Coulomb
energy to Fermi energy. When the resistivity at high
temperatures is comparable to or less than the quantum
resistance, h�e2, the resistivity, R��T�, drops noticeably
as the temperature is reduced [2]. The drop appears to
be completely quenched when a magnetic field is applied
parallel to the plane [3]. This anomalously strong positive
magnetoresistance, which is obviously related to the
spin degrees of freedom, points to the importance of the
electron-electron (e-e) interaction in this phenomenon.

These experimental observations have revived the fun-
damental question of localization or, alternatively, the ex-
istence of a metal-insulator transition in 2D systems in the
presence of a strong e-e interaction.

Although the drop in the resistivity of dilute systems is
generally considered to be universal, quantitative compari-
son indicates that the magnitude of the effect is very sensi-
tive to the system used. The most pronounced anomaly has
been reported in the cleanest (001) Si-MOSFET (metal-
oxide-semiconductor field-effect transistor) samples,
where a steep drop in R��T� of up to five to six times has
been observed.

In Fig. 1 the temperature dependence of the resistivity
for different densities in a Si-MOSFET sample with a high
peak mobility has been reproduced [4]. The insulating
region is labeled as I in Fig. 1. The range of densities
where the resistivity depends nonmonotonically on tem-
perature is labeled as C�. (For the specific sample used
in Fig. 1, this region covers electron densities in the range
0.8 3 1011 , n , 1 3 1011 cm22.) A narrow range of
densities between these two regions, in which the sepa-
ratrix that separates the insulating phase from the metallic
0031-9007�02�88(1)�016802(4)$15.00
phase should lie (if a true metal-insulator transition exists),
can be considered as the critical region C. The region with
a drop in resistivity, but where no clear maximum is ob-
served (unlike C� , is labeled as M in Fig. 1. The region
C� is the subject of this paper.
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FIG. 1. Resistivity of a high mobility Si-MOSFET sample for
various densities as a function of temperature. The electron den-
sities, n, are defined in units of 1011 cm22. Data are reproduced
from Fig. 1(a) of Ref. [4].
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Since the maximum of the resistivity in the region C� is
comparable to �h�e2, the transport mean-free path time,
t, of the electrons here is such that h̄�t & EF. The maxi-
mum together with the steep decrease in R��T� occurs at
temperatures well below the Fermi energy (see Fig. 1).
Therefore, the indications are that the nonmonotonic be-
havior of the resistivity in the region C� is a manifestation
of the physics of strongly interacting electrons that are in
the diffusive regime: T , h̄�t & EF.

Away from the region C� and deep in the region labeled
M in Fig. 1 a naive estimate for t can be extracted from
the Drude expression, h̄�t � 4�e2�h�EFR��T � 0�, with
R��T � 0� being the extrapolated value of the resistivity
at T � 0. This estimate gives h̄�t that are well below
the Fermi energy, while the steep drop in the resistivity
develops at temperatures that are comparable to or larger
than h̄�t. This implies that the anomalies in the region
M occur in the temperature range h̄�t & T , EF, and
their origin may be attributed (at least partially) to a strong
temperature dependence of the single particle mean-free
path time t�T � [5–7]. (For a recent discussion of the
region T . h̄�t, see Ref. [8].) On the contrary, since the
anomalies in the region C� are in the temperature range
T , h̄�t & EF, the effects of thermal smearing of t�T �
are quenched by the disorder [7].

These considerations lead us to the conclusion that the
anomalous decrease in the resistivity in the two regions,
C� and M, may have different origins and are hence best
studied separately. In this paper we analyze the transport
properties in the region C�, close to the critical region
C, where the transport is controlled by the propagation
of diffusive collective modes. We demonstrate that the
phenomenon in this region can be understood within the
framework of a theory describing the effect of the e-e
interaction on the propagation of these modes. (For a
review, see Ref. [9].) The peculiarity of dilute conductors
is that at low temperatures the antilocalizing component of
this effect becomes dominant.

Although universal behavior is generally expected to
hold in the critical region, no universal scaling of the
R��T� curves has been found. A considerable variance
is seen even in the data obtained from Si-MOSFET
samples of similar origin. Hence, for a quantitative under-
standing of the temperature dependence of the resistivity
in the region not far from the transition some system-
specific nonuniversal mechanism should be necessarily
invoked. The conduction band of the electrons in a (001)
Si-MOSFET surface has two almost degenerate valleys
located at points 6Q0 [10]. In what follows, the sensitiv-
ity of the transport properties of the dilute electron gas to
the scattering rate across the two valleys is presented as a
possible explanation for the absence of this universality.
At temperatures comparable to the rate of the intervalley
scattering, h̄�t�, a crossover occurs between a band with
two distinct valleys and a band where the two valleys are
effectively unified due to the intervalley scattering. We
believe that in a typical sample the value of h̄�t� falls
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within the experimentally relevant temperature interval.
Hence due to the crossover at T � h̄�t� the resistivity
R��T� will be nonuniversal. Only in an ultraclean sample
(like the one presented in Fig. 1), where the intervalley
scattering is weak and the two valleys are well separated,
should universal behavior hold.

To understand the temperature dependence of R��T� in
the case of two valleys, we study the interplay of the ap-
propriate collective modes. These modes describe fluc-
tuations of the local density of particles, spin, and the
fluctuations involving electron states from different val-
leys. The evolution of the collective modes at large scales
is described by a singular propagator with a diffusion
pole ~1��Dq2 2 iv�, where D is the diffusion constant.
These singular propagators when combined with the e-e
interaction are known to lead to the appearance of nonana-
lytical corrections to the resistivity. On the other hand, the
amplitudes of the e-e interaction that affects the propaga-
tion of the collective modes are themselves known to have
divergent corrections due to the disorder. The program to
self-consistently take into account these corrections, which
in fact corresponds to a derivation of a system of renormal-
ization group (RG) equations, has been realized to lowest
order in the resistivity (disorder), and fortunately to all or-
ders in the e-e interaction amplitudes [11].

The diffusion propagators of the electron-hole pairs in
the presence of two valleys in addition to spin quantum
numbers are labeled by quantum numbers jt�, where jt� �
6 are the two-valley indices similar to the up and down
spin states js� �", #. Altogether there are 4 3 4 � 16
electron-hole states that break up into one singlet and fif-
teen multiplet states. In the case of strong intervalley scat-
tering, however, the modes that are made of states from
different valleys acquire a gap proportional to h̄�t�. This
implies that for temperatures, or frequencies, less than
h̄�t� such modes do not yield diverging contributions and
hence become ineffective [9,12,13]. (This is the origin
of the crossover discussed above.) As a result, of the 16
modes only one spin singlet and three spin triplet combi-
nations retain a diffusion pole, and the situation becomes
equivalent to the case with no valleys.

In 2D the leading divergences are logarithmic. The RG
equation describing the evolution of the resistivity [11,14]
can be easily generalized to include two valleys:

dr

dj
� r2

∑
ny 1 1 2 �4n2

y 2 1�

3

µ
1 1 g2

g2
ln�1 1 g2� 2 1

∂∏
, (1)

where ny � 1 when T , h̄�t�, and ny � 2 when T .
h̄�t� and the two valleys are distinct. Here j � 2 ln�Tt�
and the dimensionless parameter r � �e2�ph�R�; note
the additional factor 1�p that has been introduced in r.
The first term in the square brackets corresponds to the
quantum interference correction (Cooperon) in the pres-
ence of ny valleys. The second term is the contribution of
016802-2
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the singlet density mode which, due to the long range na-
ture of the Coulomb interaction, is universal [9]. The last
term describes the contribution of the �4n2

y 2 1� multiplet
modes. The parameter g2 is the Fermi liquid amplitude
that controls the e-e interaction in all the multiplet chan-
nels normalized by the density of states for a single spin
and valley species.

The contributions from the singlet and the multiplet
modes differ in sign favoring localization and antilocal-
ization, respectively. In conventional conductors the initial
values of the amplitude g2 are small, and the net effect is
in favor of localization. In dilute systems, however, this
amplitude may be enlarged due to e-e correlations. The
total effect, including the Cooperon contribution, will fa-
vor antilocalization if g2 is greater than an ny-dependent
value g

�
2 . As a result of the increase in the number of

multiplet modes from 3 to 15, g
�
2 reduces considerably

from g
�
2 � 2.04 for ny � 1 to g

�
2 � 0.45 for ny � 2.

This strong reduction of g
�
2 makes it easier in the case of

two distinct valleys to reach the stage where the resistivity
starts to decrease.

In addition, in 2D the amplitude g2 also experiences
logarithmic corrections due to the disorder [11,14]. The
equation describing the RG evolution of g2 is the same for
both one and two valleys:

dg2

dj
� r

�1 1 g2�2

2
. (2)

As the temperature is lowered g2 increases monotonically
and when it increases beyond the value g

�
2 the resistivity

will pass through a maximum. Although the initial values
of r and g2 are not universal and depend on the system, the
flow of r according to the RG equations can be described
by a universal function R�h� [11]:

r � rmaxR�h� and h � rmaxln�Tmax�T� , (3)

where Tmax is the temperature at which r reaches its maxi-
mum value rmax, i.e., g2�Tmax� � g

�
2 . For the case of two

valleys, the function R�h� is found here by numerically
integrating Eqs. (1) and (2) with ny � 2 and the bound-
ary conditions: r�j � 0� � rmax � 1 and g2�j � 0� �
g

�
2 � 0.45.
Thus, if the experimental data of the resistivity are scaled

as in Eq. (3), then the data should collapse on the func-
tion R�h�. This analysis has certain limitations, however.
The RG equations have been derived in the lowest order
in r and therefore cannot be applied in the critical region
C where r * 1. On the other hand, for r ø 1, expo-
nentially small temperatures are needed for changes in the
resistivity to become noticeable. In addition, some other
(not yet completely identified) mechanism operating in the
region M may mask the discussed logarithmic corrections
that are very weak when r ø 1.

For these reasons, only curves in the region C� with
maximum r ranging from rmax � 0.3 to rmax � 0.6 have
been used to test the RG analysis. The result is presented
016802-3
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FIG. 2. The data corresponding to n � �0.83, 0.88, 0.94� 3
1011 cm22 in Fig. 1 are scaled according to Eq. (3). The solid
line corresponds to the solution of the RG equations (1) and
(2) with ny � 2; no adjustable parameters have been used in
this fit.

in Fig. 2. The decrease in the resistivity up to five times,
together with its saturation, has been captured in the cor-
rect temperature interval by this analysis. Note that no
adjustable parameters were used in the procedure. We
emphasize again that this universal behavior will be ob-
served only in ultraclean samples, and will not be found
in samples that are only moderately clean, because of the
crossover at T � h̄�t�.

We believe that the reason that samples with the high-
est mobility remain metallic even for resistance that is a
few times larger than the quantum resistance h�e2 can
also be attributed to the presence of two distinct valleys.
Because of the large increase of the contribution acting
against localization, the transition is shifted to higher re-
sistance. However, in MOSFET samples with moderate
mobility, as well as in p-SiGe and p-GaAs, it occurs at
values close to h�e2 or less.

Next, in samples with a low mobility, where a descrip-
tion in terms of an effective single valley is relevant, the
large value for g

�
2 � 2.04 makes it difficult for the non-

monotonicity to be observed since the initial values of g2

are, most probably, far away from 2.04. Then, to scale
the amplitude g2 till the value g

�
2 will, for r ø 1, de-

mand exponentially small temperatures as the corrections
depend on the temperature only logarithmically. On the
other hand, for r near the critical region, where changes in
the resistivity develop rapidly, the resistivity flows to such
large values that the system instead of passing through the
maximum, becomes insulating.

To summarize, we have argued that in the region not far
from the transition it is not the large value of rs that makes
the physics in high mobility MOSFET samples so different
from that in lower mobility samples, but the difference
in their number of effective valleys. Note that in some
samples the discussed anomalies have not been observed
even for rs � 10.

The strong magnetoresistance in a parallel magnetic
field [3] can also be understood by the reduction of the
016802-3
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number of diffusion modes that contribute to the antilo-
calizing corrections [15,16]. Here, the Zeeman splitting
induces a gap in the propagators of the diffusion modes
that are made of states with different spin projections. As
a result these modes will no longer contribute to the an-
tilocalization corrections. In a very strong magnetic field
when the electrons are completely polarized, the system
becomes identical to one with no valleys with the original
valleys acting as fictitious spin projections. The difference
in the resistivity of two- and one-valley systems, which is
large at low enough temperatures, will be recovered as the
magnetic field is applied resulting in a very strong positive
magnetoresistance.

In conclusion, we have demonstrated that in an ultra-
clean (100) Si-MOSFET the temperature behavior of the
resistivity in the region C� is well described by the RG
analysis of the interplay of the e-e interaction and disor-
der when the electron band has two distinct valleys. For
r not too large, the system of RG equations in the case of
two valleys is an internally consistent theory (for all prac-
tical purposes), unlike that for a single valley where g2
diverges at h � 1 after the maximum of r is passed. This
divergence points to some instability of a magnetic nature
in the electron gas. This instability also occurs in the case
of two valleys but at such low temperatures �h � 104� that
it has no practical significance.

Finally, a few remarks concerning the electron gas in
Si-MOSFETs.

The mobility at low densities is determined by the
charged centers at the Si�SiO2 interface. This may not
be the case for the intervalley scattering as it involves a
transfer of a large momentum 2Q0 ~ 1�a, where a is the
lattice constant of Si. Since the width of the inversion
layer z0 . a, the intervalley scattering amplitudes involv-
ing Coulomb interactions with the charged centers will be
proportional to a high power of the parameter 1�Q0z0,
which is small. The imperfections on the interface, on
the other hand, can be of the atomic scale and their
matrix element will contain Fourier components of high
momenta. We assume, therefore, that the rate h̄�t� is
sample dependent. At low densities the width of the 2D
plane increases making the distance from the interface
larger. As a result the intervalley scattering is suppressed
and may become negligible as the density is lowered in
the ultraclean samples.

Some information about the rate h̄�t� can be obtained
from the magnetoresistance measurements in a weak mag-
netic field perpendicular to the conduction plane. The re-
sults of these measurements [17], which yield a negative
magnetoresistance, have been fitted with a standard expres-
sion containing the Digamma function, C [18]. Depending
on the rate h̄�t�, the theory predicts different values for
the prefactor a in this expression: a � 1 in the absence of
the intervalley scattering and a � 0.5 in the case of strong
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intervalley scattering [12]. The experimental situation for
the sample used in Fig. 1 (but after some age degradation,
however) remains uncertain. The optimal fit gives values
for a between 0.6 and 0.8, with a tendency to be larger
when the density decreases [17]. We consider the fact that
a is noticeably larger than 0.5 as an indication that the in-
tervalley scattering is not too strong in the system at low
density.

We have ignored the valley splitting, as it is known that
the splitting is small at low densities [10]. We also ignore
the chiral splitting of the electron bands due to spin-orbit
interactions as there are no reasons to expect considerable
splitting in n-channel inversion layers.
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