
VOLUME 88, NUMBER 1 P H Y S I C A L R E V I E W L E T T E R S 7 JANUARY 2002
Bulk Excitonic Effects in Surface Optical Spectra
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We calculate the surface optical properties of the passivated Si(110) surface using a real-space multi-
grid technique and ab initio pseudopotentials. Rather than from the usual eigenvalue representation,
the macroscopic polarizability is obtained from the solution of an initial-value problem, which allows
inclusion of excitonic and local-field effects in addition to the electronic self-energy in the surface calcu-
lations. It is shown that the electron-hole attraction is largely responsible for the peculiar line shape of the
surface reflectance anisotropy.
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The correct understanding and modeling of surface op-
tical properties has been a long standing issue of scien-
tific interest. Techniques such as reflectance anisotropy/
difference spectroscopy (RAS/RDS) have evolved from
experimental methods to characterize static surfaces to
very powerful in situ diagnostic probes which allow for
the monitoring and controlling of the surface growth in
real time and in challenging environments such as in high
pressures or under liquids [1]. However, somewhat in con-
trast to their frequent use, the present understanding of the
physical origin of the observed optical phenomena is still
rather limited.

Aspnes and Studna [2] discriminated between two com-
ponents of surface optical spectra: “intrinsic” contributions
arising from optical transitions within the bulk and “extrin-
sic” contributions directly related to the surface chemistry.
The latter can often be traced to specific surface electronic
states and serve as fingerprints for surface structural mo-
tifs [3,4]. The origin of the intrinsic features, however, is
harder to explain. It has been discussed for a long time
that these features are likely to be related to many-particle
effects [5] and/or surface local fields (LF) [6,7], i.e., the
influence of the surface-modified microscopic fluctuations
of the electric field on the macroscopic dielectric response.
However, no definite assignment has been possible yet.

This is largely due to the numerical expense required
for converged calculations of surface optical properties.
In particular, the intrinsic features of the surface spectra
are caused by electronic transitions involving a very large
number of surface-modified bulk wave functions [3].
Therefore even calculations assuming a single-particle
picture for electronic excitations and neglecting self-
energy effects are quite involved for surfaces. The inclu-
sion of many-particle effects such as electron-electron and
electron-hole interactions dramatically increases the
computational cost. Although exact expressions for the
excitonic and LF contributions to the surface optical re-
sponse based on the Bethe-Salpeter equation (BSE) have
been derived decades ago, their application has been lim-
ited to very few tight-binding (TB) studies [8]. Because
of the complexity of the problem, another, more frequently
used approach approximates LF effects by modeling the
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crystal surface by a lattice of polarizable entities, which
obey a Clausius-Mossotti–like relation [6,7,9]. Obviously,
such models as well as TB calculations necessarily depend
on external input parameters and cannot account accurately
for the surface induced changes of the electronic structure.
Very recently, it has become possible to solve the BSE
from first principles for bulk semiconductors [10,11] and
strongly localized surface states [12]. However, the large
numerical effort has restricted such calculations to the
interaction of relatively few electron-hole pairs. As yet
they have not been applied to the surface optical response
in a wide spectral range.

Here we use an alternative approach to solve the BSE
that allows for the study of large systems such as surfaces.
It is shown that many-particle effects on the energies and
oscillator strengths of electronic excitations in bulklike lay-
ers are largely responsible for the appearance of the intrin-
sic features in surface optical spectra. In particular the
electron-hole interaction may influence the magnitude and
line shape of spectral features.

We use the hydrogen-passivated Si(110) surface as a
model system. It is one of the first systems studied by
RAS [2] and its optical features are mainly intrinsic in
character. The passivation of the Si dangling bonds results
in there being no surface states in the energy region probed
by RAS. The surface spectrum is rather insensitive to the
structural and chemical details of the passivation [2,13,14]
and has a very characteristic line shape with maxima close
to the E1 and E2 critical point energies of bulk silicon.
Because the RAS spectrum can be easily reproduced, it
has become a calibration standard for RAS apparatus and
a textbook example for surface optical properties [15].

The physical mechanism leading to the observed line
shape, however, is not understood. In their original study
[2] Aspnes and Studna argued that the measurements
are indicative for the appearance of surface local fields
and/or many-body screening. The strong influence of
local fields seems to be supported by model calculations
[6,9]. TB studies that neglected LF effects [16] failed to
describe the experiment, as did a TB work that included
an approximation for LF effects [7]. In the latter study it
was concluded that surface defects are responsible for the
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experimentally observed peaks. While real surfaces do
contain defects, their RAS contributions should be small
in that specific case, since the measured spectrum is
nearly independent from the surface preparation proce-
dures [2,13,14]. Indeed, a recent ab initio calculation [17]
that approximated self-energy corrections using a scissors
operator, but neglected LF and excitonic effects, showed
that a hydrogen-terminated Si(110) surface gives rise to
optical anisotropies at the bulk critical points without
the assumption of surface defects. This work, however,
could not account for the peculiar line shape observed
experimentally.

We go beyond these previous studies and present a con-
sistent and detailed analysis of how electronic self-energy,
LF, and excitonic effects manifest themselves in the optical
spectrum of Si(110):H. Thereby we proceed in three steps:
(i) local density-functional (DFT-LDA) calculations yield
the structurally relaxed ground state configuration of the
surface, including the Kohn-Sham eigenvalues and eigen-
functions that enter the single- and two-particle Green’s
functions; (ii) the electronic quasiparticle spectrum is
obtained within the GW approximation [18] to the ex-
change correlation self-energy; and (iii) the BSE is solved
for coupled electron-hole excitations [10–12]. Thereby
the screened electron-hole attraction and the unscreened
electron-hole exchange are taken into account [19]. Inclu-
sion of the latter allows for a parameter-free calculation of
the LF effects. For surfaces, LF effects can be expected
from both the microscopic fluctuations of the electric field
within the bulk, and from the truncation of the bulk itself.
The resulting macroscopic polarizabilities are finally
used to compute the reflectance anisotropy for normally
incident light polarized parallel to the �11̄0� and [001]
directions [20].
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The surface is modeled by periodic supercells containing
12 atomic Si layers. Silicon dangling bonds at the bottom
and top layer are saturated with hydrogen. A vacuum
region equivalent to 8 atomic layers in thickness sepa-
rates the material slabs in [110] direction. Apart from
the atoms of the innermost two layers which were kept in
their ideal bulk positions, all atomic coordinates are fully
relaxed. Four k points in the irreducible part of the surface
Brillouin zone are used for the self-consistent calculation
of the ground-state charge density. For the calculation
of the surface optical properties we use 140 uniformly
distributed k points.

In detail, we start from first-principles pseudopoten-
tial calculations, using a massively parallel real-space
finite-difference implementation of the DFT-LDA [21]. A
multigrid technique is used for convergence acceleration.
In the second step we include electronic self-energy ef-
fects. This requires the replacement of the LDA exchange
and correlation potential by the nonlocal and energy-
dependent self-energy operator S�r, r0; E�. We calculate
S in the GW approximation [18], where it is expressed
as a convolution of the single-particle propagator G and
the dynamically screened Coulomb interaction W . Since
the calculation of surface optical spectra involves a very
large number of electronic states, we introduce further
approximations and use a model dielectric function
[22] to calculate W . This speeds up the calculations
substantially and results in bulk and surface quasiparticle
energies which are within about 0.1 eV of the complete
calculations [3,23]. The electron-hole interaction is taken
into account in the third step. The inhomogeneous BSE
for the polarization function determining the macroscopic
optical polarization is transformed into an effective two-
particle eigenvalue problem for the coupled electron-hole
excitations. The two-particle Hamiltonian
Hyck,y0c0k0 � �eck 2 eyk�dyy 0dcc0dk,k0 1 2
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describes the interaction of pairs of electrons in conduction
states jck� and holes in valence states jyk� [19]. It consists
of three parts. The diagonal first part is given by the
quasiparticle energies obtained in the GW approximation.
The second, exchange-interaction term, where the short-
range part of the bare Coulomb potential ȳ enters, reflects
the influence of local fields. The third part, finally, which
we calculate using the same approximations for W as in the
self-energy, describes the screened electron-hole attraction.

The eigenvalues and eigenvectors of the two-particle
Hamiltonian (1) determined by matrix-diagonalization
techniques can be used to calculate the macroscopic
dielectric function. While this works perfectly for a rela-
tively small number of electron-hole pair states [10,12],
direct diagonalization techniques are prohibitively ex-
pensive for systems described by many electronic states
such as those studied here. The dimension of the exciton
Hamiltonian for the 12 layer slab used to model the
Si(110):H surface is N � Ny 3 Nc 3 Nk � 350 000. In
order to avoid the diagonalization bottleneck we followed
an idea by Glutsch et al. [24]: If the energy dependence
of the macroscopic polarizability on the eigenvalues of the
exciton Hamiltonian is Fourier transformed, the polariz-
ability can be obtained from the solution of an initial-value
problem for a vector jm�t��, the time evolution of which
is driven by the pair Hamiltonian (1)

ih̄j �m�t�� � Hjm�t�� . (2)

The initial values of the vector elements are given by

mi
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where yi is the i �� x, y, z� component of the velocity
operator. The macroscopic dielectric function with the
broadening parameter g is then obtained by the Fourier
transform of e2gt�m�0�jm�t��. We solve the initial-value
problem by the central difference (“leap-frog”) method
with the matrix-vector multiplications distributed on many
processors. The upper limit of the Fourier integral can
be truncated, due to the exponential e2gt. The num-
ber of time steps, i.e., matrix-vector multiplications, is
nearly independent of the dimension of the system. The
operation count for this method (details will be published
elsewhere) scales thus with O �N2� as compared to the
O �N3� for the matrix diagonalization. It is therefore par-
ticularly suitable for systems with many electron-hole pair
states N .

Figure 1 contains the calculated RAS spectra for the
Si(110):H surface represented by a 12-layer slab. The
DFT-LDA spectrum shows two strong positive RAS fea-
tures near the E1 and E2 bulk critical point energies. How-
ever, the features are far too broad. This is partially due to
the coarse k-point sampling and a slab which is too thin to
allow for a complete description of the surface-perturbed
bulk wave functions responsible for the observed optical
anisotropies. Denser k-point meshes and thicker slabs lead
to a much better description of the optical anisotropy at the
E2 energy (see Fig. 3 in Ref. [17]). They do not improve
the poor representation of the line shape and strength of the
anisotropy at the E1 energy, however. Inclusion of quasi-
particle effects in GW approximation leads to a blueshift
of the spectrum by about 0.6–0.7 eV and changes the line
shape. In particular, the anisotropy at the E1 energy is en-

FIG. 1. RAS spectra �Re ��r �11̄0� 2 r �001����r�	� calculated for
Si(110):H described by a 12-layer slab. The notation refers to
calculations within DFT-LDA, in GW approximation, in GW
approximation with the effects of local fields included, and
in GW approximation with the effects of local fields and the
electron-hole attraction included.
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hanced compared to the DFT-LDA spectrum. The E1 peak
height relative to the E2 anisotropy is still much smaller
than measured, however. LF effects lead to surprisingly
small changes of the spectrum. We find a reduction of the
calculated slab polarizabilities upon inclusion of LF effects
comparable to the one calculated for bulk Si. The reduction
acts both on the a�001� and the a�11̄0� tensor components.
It is therefore largely canceled in the optical anisotropy.
Rather than increasing the ratio of the E1�E2 peak heights,
LF effects even lead to a small decrease. A drastic en-
hancement of the optical anisotropy at the E1 energy and a
redshift of the entire spectrum by about 0.1–0.2 eV result,
however, from the inclusion of the attractive electron-hole
interaction. This is shown by the uppermost spectrum in
Fig. 1. Also the characteristic negative anisotropy below
the E1 energy is enhanced by excitonic effects.

Figure 2 shows the calculated slab polarizability. The
�11̄0� component, i.e., the component probed by light with
a polarization direction parallel to the Si-Si zigzag chains
shows a strong peak close to the E1 energy. On the
other hand, the a�001� component has only a weak shoul-
der at the E1 energy. This difference is responsible for the
strong optical anisotropies measured for passivated Si(110)
surfaces.

The stepwise inclusion of many-particle effects in the
calculation leads to a considerable and systematic improve-
ment of the agreement with the experiment. However, even
the uppermost curve in Fig. 1 still deviates from the mea-
sured data. On the one hand, this concerns the line shape
around the E2 peak. This is mainly due to the insufficient
thickness of our slab. That can be seen from DFT-LDA
calculations [17] which are computationally far less
expensive and can thus be extended to full numerical
convergence. For the comparison with the experimental
data [13] shown in Fig. 3 we have therefore extrapolated

FIG. 2. Imaginary parts of the a�11̄0� (solid line) and a�001�
components of the slab polarizability calculated for Si(110):H
in GW approximation with the effects of local fields and the
electron-hole attraction included.
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FIG. 3. Measured data for Si(110):H from Ref. [13] are com-
pared with the extrapolation of the GW 1 LF 1 Ex curve from
Fig. 1 to calculations for a 24-layer slab (see text).

our calculated spectrum to a thicker slab by adding the
difference between the “GW 1 LF 1 Ex” and “GW”
curves from Fig. 1 to the RAS spectrum of Si(110):H
calculated in GW approximation for a 24-layer slab. This
simple procedure leads to a rather good description of
the measured line shape. However, there remains still
another discrepancy between calculation and experiment:
The calculated peak positions occur at energies that are
about 0.3 eV too high. Our calculations were performed
at the theoretical equilibrium lattice constant of 5.378 Å.
That leads to an increase of the energy splitting between
occupied and empty states by about 0.1 eV compared to
calculations at the experimental lattice constant. Tempera-
ture effects in the measured spectra which are neglected in
our calculations result in a redshift of the optical spectra
by a similar amount [25]. The remaining difference to the
experiment is related to numerical insufficiencies as the
relatively small number of k points and our approxima-
tions in calculating the screened Coulomb potential W .
The latter tend to lead to slightly overestimated excitation
energies [22].

In summary, we have demonstrated that by using a time-
evolution rather than a matrix-diagonalization technique
for the solution of the Bethe-Salpeter equation, it is now
possible to include excitonic and local-field effects in the
calculation of optical properties of complex systems con-
sisting of many atoms. We calculated the optical ani-
sotropy of the prototypical Si(110):H surface, the origin of
which has been the subject of a long-standing controversy.
It is shown that excitonic effects via strong modifications
of the optical response of surface-modified bulk wave func-
tions determine largely the line shape of the optical fea-
tures. Local-field effects are found to play a much smaller
role than previously thought. We expect the method pre-
sented here to be extremely useful for the accurate calcu-
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lation of optical properties for many more systems charac-
terized by a large number of electron-hole pairs.
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