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Dynamics of the Pinned Modulation Wave in Incommensurate
bis (4-chlorophenyl) sulfone (BCPS)
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We show that both the anomalously huge resonance-frequency dependence of the 35Cl nuclear
quadrupole resonance (NQR) spin-lattice relaxation time in BCPS, reported here for the first time, and its
anomalous temperature dependence can be explained by large-scale fluctuations of the pinned modulation
wave instead of small-scale fluctuations (phasons and amplitudons). The results were obtained by mea-
suring the laboratory (T1Q) and rotating frame (T1Q,r) 35Cl relaxation times. This is the first time that an
effective resonance frequency dependence of the spin-lattice relaxation rate was measured in pure NQR.
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The dynamics of incommensurate (IC) crystals, such as
bis (4-chlorophenyl) sulfone [1], �C6H4Cl�2SO2 (abbrevi-
ated as BCPS), is characterized by a doubly degenerate
soft mode which condenses to the incommensurate modu-
lation wave on approaching the normal (N) to IC transi-
tion temperature TI from above [2]. Since the periodicity
of the frozen out eigenvector of the soft mode (i.e., the
modulation wave) is incommensurate to the periodicity of
the basic lattice, translational periodicity is lost in the di-
rection of the modulation wave below TI in spite of per-
fect long range order. The soft mode splits at TI into an
opticlike amplitudon mode the frequency of which in-
creases with decreasing temperature, and a temperature-
independent gapless acousticlike phason mode which is the
symmetry-recovering Goldstone mode of the N-IC transi-
tion. One of the signatures [2] of IC phases is an anoma-
lously strong phason-induced spin-lattice relaxation rate
T21

1Q of quadrupolar nuclei, resulting in a T1Q minimum at
TI. This is due to the fact that phason excitations are of low
frequency at high q vectors (in contrast to normal acous-
tic modes) and thus produce a rather strong modulation of
the electric field gradient (EFG) tensor at the quadrupo-
lar sites. However, recent very precise measurements of
the 35Cl nuclear quadrupole resonance (NQR) spin-lattice
relaxation rate in BCPS have clearly demonstrated [3,4]
that the 35Cl T1Q in BCPS does not show a minimum at
TI � 150 K but shows a shallow minimum at 10–20 K
below TI [i.e., at around 140 K (Fig. 1)]. Such a behav-
ior has not been observed in any other IC systems stud-
ied so far. The fact that the T1Q minimum occurs not at
TI � 150 K but rather 10–20 K lower, i.e., deeply in the
IC phase, is further supported by the fact that the typical
incommensurate 35Cl NQR line shapes [2–4] as well as
neutron scattering data [5] show the onset of the IC phase
at 150 K and not at the T1Q minimum around 140 K.

The above anomalous behavior cannot be understood
within the standard description of relaxation in IC systems
[2]. In this Letter we show that this anomaly is due to
the breakdown of the linearized description of the elemen-
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tary excitations in real IC systems induced by the pres-
ence of standing wave-type large phase fluctuations of the
impurity-pinned IC modulation wave. Furthermore, the
theory, which is summarized later in this Letter, predicts
an exponential dependence on the resonance frequency of
the spin-lattice relaxation rate as well as a minimum in a
temperature plot occurring at temperatures significantly be-
low that of the IC transition temperature TI. These results
differ from corresponding results appropriate to smaller
fluctuations.

A difficulty exists in attempting to measure the reso-
nance frequency dependence in pure NQR, since the en-
ergy level spacing (and thus the resonance frequency) is
fixed by internal interactions and cannot be varied by the
experimenter. We were able to circumvent this problem
by measuring the spin-lattice relaxation time in the rotat-
ing frame rather than only in the lab frame. Since the
energy level spacing in the rotating frame (even in pure

FIG. 1. Temperature dependence of 35Cl NQR laboratory
frame spin-lattice relaxation time T1Q measured in a BCPS
single crystal.
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NQR) is determined by the rf magnetic field B1, measure-
ments of the NQR rotating frame spin-lattice relaxation
(T1Q,r) vs B1 can in principle be used to determine the
resonance-frequency dependence of the spin-lattice relaxa-
tion time and so discriminate between different possible re-
laxation mechanisms.

We performed in a BCPS single crystal 35Cl pure NQR
rotating frame spin-lattice relaxation (T1Q,r) measure-
ments, which show the predicted exponential dependence
on resonance frequency of the relaxation rate for large
phase fluctuations and, similar to the T1Q data, exhibit no
anomaly at TI. The observed temperature dependences
of both the T1Q and T1Q,r in BCPS can be quantitatively
described within the above model thus allowing for a
detailed insight into the low frequency dynamics of the
pinned modulation wave.

Inelastic neutron scattering [5] measurements recently
resulted in a direct determination of the phason frequency
in BCPS at the satellite position �kI � �a� 6 �1�5 1 d� �b�

in the IC phase. Here �a� and �b� are reciprocal lattice
vectors and d varies [6] between d � 0.021 at 150 K
and d � 0.014 at 20 K. The splitting of the condensing
soft mode into phason and amplitudon modes below TI �
150 K was clearly observed. The phason frequency gap
Dw was found to be huge. It is equal to 90 6 10 GHz
from TI down to 19 K, whereas the amplitudon frequency
gap DA increases from 90 to 450 GHz in this tempera-
ture interval. The phason damping constant is Gw�TI� �
160 6 20 GHz. In addition to phason and amplitudon ex-
citations a critical central peak was observed as well [5].
The resolution of the neutron scattering measurements [5]
did not allow a detailed study of the central peak. The
width of the central peak was estimated [7] from 35Cl NQR
and 2H NMR spin-lattice relaxation data to be of the or-
der of several GHz in the temperature range from 200 K
to TI. The fact that the phason frequency is not zero at
the critical wave vector �kI but exhibits a rather large fre-
quency gap Dw � 90 GHz demonstrates that the modula-
tion wave u� �r, t� � A��r, t� cosw� �r, t� � u��r� 1 du��r , t�
in BCPS is strongly pinned.

The standard theory of spin-lattice relaxation in IC
systems [2] considers only small thermal fluctuations
of the modulation wave du��r, t� � dA�t� cos�w� 2

A sin�w�dw�t� (i.e., amplitudons and phasons) where dA2

and dw2 ø 1. The amplitudon-induced NQR spin-lattice
relaxation rate is given by [2]
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and the phason-induced rate is [2]
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where Gw � GA, a is a positive constant, and C is propor-
tional to fluctuations in the EFG tensor components pro-
duced by the motion of the modulation wave. The effective
spin-lattice relaxation rate T21

1Q varies [2] over the IC line
shape in the simplest linear case n � n0 1 n1u� �r� as

T21
1Q � ��n 2 n0��n1� �T21

1Q �A

1 �1 2 ��n 2 n0��n1�2� �T21
1Q �w .

The above expressions are derived [2,8] for the large
gap limit Dw ¿ vQ ,

p
GwvQ and DA ¿ vQ,

p
GAvQ.

Since the 35Cl resonance frequency in BCPS is vQ�2p �
35 MHz, these conditions are obviously fulfilled in BCPS
where the gaps are in the 102 GHz regime (as shown
by the inelastic neutron scattering data [5]). The above
theory thus predicts that the T1Q versus temperature plot
should have a minimum at TI, which obviously disagrees
with the experimental data [3,4]. It also predicts that T1Q

should be independent of the resonance frequency.
Let us now drop the assumption of small phase dw�t�

and amplitude dA�t� fluctuations of the modulation wave.
Instead we assume that the phase fluctuations between the
pinning centers may become so large (dw2 $ 1) that the
linearized description of the excitations in the IC system is
no longer valid [9]. We now have to consider the spectral
density of the autocorrelation function of the fluctuations
of the pinned modulation wave G��rj , t� � u� �rj , 0�u��rj, t�,
where �rj is the position of the jth nucleus. For large
standing wave phase fluctuations, which we believe [9]
determine the central peak dynamics in BCPS, we have
to consider

Gjw � A2cos�w��rj , 0�� cos�w��rj , t�� , (2)

instead of Gjw � dw��rj , 0�dw��rj , t�.
To make the problem tractable we write w��rj , t� as a

sum of the large quasistatic part w0j and a time-dependent
part wk� �rj , t�,

w� �rj, t� � w0j 1

kmaxX
k�kmin

wk� �rj , t� , (3)

where w0j � �kI ? �rj 1 w0, �ki�min � p�l, and �ki�max �
p�a, i � x, y,z. Here a is an average normal-phase unit
cell size and l is the mean distance between those impurity
centers that are effective in pinning the modulation wave
at a given temperature. l is independent of temperature in
the strong coupling limit, but in the weak coupling limit
effectively increases with increasing temperature as the
modulation wave becomes more depinned. In this limit,
it can be shown that [10] l ~ �TI 2 T �2b��g21��3�, where
g � 2 and b � 0.35 near TI (TI 2 T , 1.5 K) and 0.75
far below TI (TI 2 T � 25 K) [3]. This temperature de-
pendence of l is small compared to that arising from large
phase fluctuations and will be neglected in our subsequent
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treatment. The time-dependent part of w��rj, t� is given by
standing waves wk� �rj , t� in a coherence volume l

3
which

can be approximated by a square box:

wk��rj , t� � w0k sin�vkt 1 ak� sin�kxxj�
3 sin�kyyj � sin�kzzj� . (4)

Here vk �
p

k k are standing-wave phase fluctuation
mode frequencies and k is a constant determining the
slope of the dispersion branch. The phases ak are assumed
to be randomly distributed in the interval ak [ �0, 2p�
and the distribution of the amplitudes w0k is assumed to
be Gaussian. We now find
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A2

2

" Y
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e2z2I0�z2�

#
j

, (5)

where I0�z� �
P`

m�0�z�2�2m��m!�2 is the zeroth order

modified Bessel function, z1 � 1
2w

2
0k sin2�vkt�2�, and

z2 � 1
2w

2
0k cos2�vkt�2�.

In general the resulting spectral densities have to be
evaluated numerically. If, however, Gjw�t� decays to zero
in a time t ø v

21
k for all vk , the problem can be solved

analytically. The relaxation rate for large phase fluctua-
tions of the pinned modulation wave is now given by

�T21
1Q �w�v� ~
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TI 2 T

TI

∂3b

exp

µ
2

v2

4p2
0

∑
TI 2 T

TI

∏2b∂
,

(6)
instead of by Eq. (1b).

If the small-scale amplitude fluctuations are much
faster than the large phase fluctuations, the two modes
are essentially uncoupled and the amplitudon relaxation
rate is still given by Eq. (1a). The parameter p0 varies
slowly with temperature and is given [9] by p0 �q

kBTV0Nw�N0ml
3

1�A0. Here V0 is the volume of
the unit cell in the normal phase, N0 is the number
of nuclei in this cell, m is an average nuclear mass,
Nw � p�6��kmax�kmin�3 2 1� is approximately given
by the number of nuclei in the coherence volume, and
A � A0��TI 2 T��TI�b .

The predicted temperature and resonance frequency de-
pendence of T1Q is illustrated in Fig. 2. On cooling from
above through the normal to IC transition temperature TI,
the spin-lattice relaxation time T1Q first decreases with in-
creasing TI 2 T , then goes through a broad asymmetric
minimum well below TI, and finally increases with de-
creasing temperature at still larger TI 2 T values. The
minimum disappears if v�p0 , 5 (Fig. 2). This behavior
is completely different from that observed for small phase
fluctuations [Eq. (1b)], where the minimum value of T1Q

is always found at TI. Another important point is that
the resonance frequency dependence of T21

1Q predicted by
Eq. (6) can be rather strong if v�p0 . 5 and will vary
015701-3
FIG. 2. Theoretical temperature dependence of the spin-lattice
relaxation time T1Q in the presence of large phase fluctuations
of the pinned modulation wave for different values of v�p0 .

with temperature. It is nonexistent in the small phase fluc-
tuation case given by Eq. (1b). The resonance frequency
dependence of T21

1Q can thus prove or disprove the above
model given by Eq. (6). To check this feature we decided
to measure the 35Cl rotating frame spin-lattice relaxation
rate T21

1Q,r.
For the large phase fluctuation case the temperature

and resonance frequency dependence of the rotating frame
spin-lattice relaxation rate T21

1Q,r�V� is also essentially
given by Eq. (6) provided the NQR resonance frequency
v � vQ is replaced by the effective 35Cl resonance fre-
quency V in the rotating frame [11], where V is

V � gB1

p
a2 1 bb� . (7)

Here g is the 35Cl gyromagnetic ratio, B1 is the am-
plitude of the rf field, a � sin�2c� cosu, and b �
�
p

3�2� cos�2c� sinue2if 1
1
2 sin�2c� sinueif. Further-

more, u and f are the polar and azimuthal angles of the
direction of the rf field with respect to the principal axis
frame of the EFG tensor, and the angle c is related to
the asymmetry parameter h � �VXX 2 VYY ��VZZ of the
EFG tensor via h �

p
3 tan�2c�. Since h � 0.2 in the

paraelectric phase of BCPS [12], c is here about 3±. V in
our case amounts to �0.8gB1.

The 35Cl NQR relaxation times [11] were measured in
the rotating and the laboratory frames on a BCPS single
crystal by the pulse sequences, as discussed in Ref. [11]:
T1Q,r by a 90±x-locking pulsey-t-180±x-t-echo pulse se-
quence and T1Q by a 180±x-t-90±x-t-180±x-t-echo se-
quence. A computer controlled automatic adjustment of
the Q factor of the coil circuit was used.

In Fig. 3 the temperature dependences of the 35Cl T1Q

and T1Q,r are compared with theoretical predictions from
Eqs. (6) and (7). Far above the transition temperature
TI, T1Q is relaxed by slow molecular reorientations and
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FIG. 3. Temperature dependence of the laboratory T1Q (open
circles) and rotating frame 35Cl NQR spin-lattice relaxation
times T1Q,r (solid circles) for V � 2p 3 9 kHz; solid line:
fit to Eq. (6) with the parameter p0 � 40.8 MHz. Here vQ �
2p 3 34.79 MHz.

increases with decreasing temperature. Some 20 K above
TI the condensing IC soft mode takes over and T1Q then
decreases with decreasing temperature. The decrease of
T1Q on approaching the phase transition from above in the
N phase can be described in the same way as in Ref. [3],
i.e., by �T 2 TI�z , where z � 0.69. T1Q shows no anom-
aly at TI (Fig. 1) but reaches a broad minimum at around
140 K, well below TI [3,4]. T1Q is nearly T independent
between 140 and 120 K and then increases with decreas-
ing T . The data were fitted by Eq. (6) and from the best fit
the parameter p0 was determined to be p0 � 40 MHz. A
similar temperature dependence was observed for T1Q,r at
V � 2p 3 9 kHz. T1Q,r is significantly shorter than T1Q

in a large T interval below TI. The ratio T1Q�T1Q,r varies
with decreasing T between 16 at 140 K and 100 at 25 K
in agreement with the frequency dependence predicted by
Eq. (6). The T and resonance-frequency dependence of
T1Q and T1Q,r can be described by expression (6) using
the same p0 parameter (Fig. 3). T1Q,r as well increases
with increasing B1 as predicted by Eqs. (6) and (7).

The above results thus show that the 35Cl spin-lattice
relaxation rate in the molecular crystal BCPS, which oc-
curs 10–20 K below TI, is determined by large stand-
ing wave-type phase fluctuations, dw2 $ 1, of the pinned
015701-4
modulation wave rather than by small-scale phason excita-
tions as assumed so far. The results agree with the recent
observation of a large phason gap and a distinct central
peak in BCPS by neutron scattering [5]. This is the first
time that a breakdown of the linearized description of ex-
citations in the IC system has been observed over such
a large T interval. Similar T1Q and T1Q,r effects should
also occur in other real IC systems with a large phason
gap. A systematic measurement of the frequency and T
dependence of the 35Cl NQR spin-lattice relaxation time
in the rotating frame should thus allow a detailed insight
into the dynamics of the pinned IC modulation wave and
the pinning process itself. It seems, however, that BCPS
is unique in that such a large difference between the N -IC
transition temperature TI and the T1Q minimum has not
been reported in any other IC system so far.

In addition, our use of the rotating frame constitutes the
first time that the resonance-frequency dependence of the
spin-lattice relaxation time has been measured in a pure
NQR experiment.
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