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When Boundaries Dominate: Dislocation Dynamics in Smectic Films
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We discuss the influence of dissipation at a system boundary (film-meniscus interface) on the dynamics
of dislocation loops inside a smectic film. This dissipation induces a strong coupling between disloca-
tions— effectively independent of their separation —leading to their nontrivial dynamics. Because of
these dynamics, the effective “dynamical” radius of nucleation can be 10 times larger than the usual
static critical radius.
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In the study of bulk properties of physical systems,
one usually neglects the effect of boundary conditions;
however, in exceptional cases where dissipation at the
boundary dominates, this is not necessarily the case. One
recently discussed example in solid state physics is electron
conductance in quantum wires [1–3], where the finite re-
sistance of a ballistic wire is a contact resistance that comes
from processes that take place outside the wire. Here,
we discuss a similar type of phenomenon, in soft-matter
physics, where dissipation at the contact between a system
and a reservoir leads to nontrivial, effectively infinite-range
dynamics inside the system.

In many physical systems, transitions between metas-
table and stable states involve nucleation of a critical nu-
cleus of the stable phase. The nucleus grows only when its
size exceeds a critical size, which is set by the competition
between the bulk and surface thermodynamic forces. We
show in our example that dissipation at the boundaries of
the system can change the size of the critical nucleus and
its dynamics. The shift in the critical size induced by dis-
sipation is analogous, but of different origin, to the one in
Lifshitz-Slyozov theory [4].

A common problem in nonequilibrium statistical
mechanics is the correct identification of dissipation
function [5–8]. Here, we calculate explicitly the dissi-
pation at a boundary and also show how to obtain the
equations of motion either by minimizing the dissipation
or by a local approach using the correctly identified
thermodynamic forces.

In order to discuss the importance of dissipation at a sys-
tem boundary, we take, as a paradigm, the dynamics of ele-
mentary dislocation loops in a freely suspended, smectic
film [9,10]. This problem is directly connected to the dy-
namics of thinning transitions of smectic films [11], which
occur when they are heated above their transition tempera-
ture towards the nematic (or isotropic) phases.

To perform the calculations, we assume that the film is
circular, of thickness Nd (d is the layer thickness and N
is their number) and radius rm, and is coupled to a menis-
cus, which acts as a reservoir of particles. We consider n
separated dislocation loops of radii rk �k � 1, . . . , n�, each
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characterized by the same line tension E and the same
Burgers vector b � d (Fig. 1). We suppose that they are
far enough from each other to neglect their very short elas-
tic interactions. We also neglect the hydrodynamic inter-
actions coming from the flow inside the film. The film
is stressed [10], due to the pressure difference Pair 2 PN

across its free surface (Pair is the external pressure and PN

is the pressure inside the film), which is the driving ther-
modynamic force for dislocation growth.

Global approach to the dislocation dynamics: minimi-
zation of the dissipation.—To describe the dislocation dy-
namics we assume that the free energy gained per unit
time, W � 2

dF
dt (with F � equilibrium free energy), in

the whole system (film 1 meniscus) is entirely dissipated
(no inertia). We find for W the following equation:

W � 2pDPNdymrm 2 2pE
nX

k�1

yk , (1)

FIG. 1. Dislocation loops in a smectic film and its meniscus.
(a) Top view; (b) cross section AA.
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where yk is the velocity of a kth dislocation (positive when
the loop is growing and negative when it collapses) and

ym �
1
N

nX
k�1

ykrk�rm (2)

is the mean velocity of the fluid which is transported from
the growing dislocation loops to the entrance of the menis-
cus (ym is positive when the meniscus fills and negative
when it drains). DP � Pair 2 Pm � g�R [9,10] is the
pressure drop across the free surface of the curved menis-
cus [Pm is the pressure in the bulk of the meniscus (in
general different from the pressure in the film PN) g is the
surface tension at the smectic-air interface and R is the
radius of curvature of the meniscus profile]. The first term
in Eq. (1) [also equal to �g�R� �dVm�dt�, where Vm is the
volume of the meniscus] is the gain of the surface energy
per unit time of the whole system (film 1 meniscus); the
second term is due to the change of radii and, hence, of
the line energy of the dislocations.

For the dissipation function we propose the follow-
ing form:

F � 2pdm

nX
k�1

y2
krk 1 2pCNdmy2

mrm . (3)

The first term in Eq. (3) corresponds to the dissipation in
the film due to the permeation flow around the core of the
dislocations. The second term is associated with the flow
of matter around the dislocations of the meniscus. It con-
tains cross terms of type yiyj with i fi j, responsible for
a dynamical coupling between the dislocations. Here 1�m

corresponds to the usual dislocation mobility, assumed to
be independent of the film thickness [10] (1�m �

p
lp�h

[12], where lp is the permeation coefficient and h is the
shear viscosity parallel to the layers). The constant C char-
acterizes the “strength” of the dissipation in the meniscus
and will be calculated later.

In the absence of inertial effects, W � F at each in-
stant of time. To obtain the equations of motion for the
dislocations, we minimize F with respect to the veloci-
ties yk , subject to the constraint W � F. This is equiva-
lent to assuming a minimum of the entropy production
at each instant of time, which is valid only for station-
ary nonequilibrium states when phenomenological coeffi-
cients (h, lp, etc.) can be supposed to be constant [13].
This is obviously the case in our system, where velocities
and corresponding Reynolds numbers are extremely small
�Re � ryNd�h � 1027 ø 1�. We thus obtain a set of
n equations �k � 1, . . . , n�,

≠F

≠yk
2 2

≠W

≠yk
� 0 , (4)

which gives, using Eqs. (1)–(3),

�DP 2 Cymm�d 2 dykm 2 E�rk � 0 . (5)

Local interpretation.—Equation (5) has a very simple
interpretation in terms of effective forces acting on each
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dislocation: indeed, 2E�rk corresponds to the inward line
tension force, 2dykm corresponds to the frictional force
opposed to the velocity, and �DP 2 Cymm�d corresponds
to the driving force (“Peach-Koehler” force [14]), also
equal to �Pair 2 PN �d. Comparing the last two expres-
sions yields

PN 2 Pm � Cymm . (6)

This equation shows that the pressure in the film differs
from the pressure in the meniscus when matter enters or
leaves the meniscus. The constant Cm thus characterizes
the “permeability” of the meniscus.

Equation (5) �k � 1, . . . , n� may be rewritten in a form
more suitable for numerical (or analytical) analysis:

Vk � 1 2 1�Rk 2
C

Pn
k�1 Rk�1 2 1�Rk�

�RmN 1 C
Pn

k�1 Rk�
. (7)

Here, we define the dimensionless velocity, Vk �
yk�ymax, where ymax � DP�m is the maximum velocity
a dislocation can reach when C � 0. The dimensionless
radius Rk � rk�rc, where rc � E��DPd� is the critical
radius for a dislocation loop when C � 0.

Finally, we calculate the constant C. Two regions may
be distinguished inside the meniscus (Fig. 2): In the first
region, near the film, the dislocations are far enough from
each other that the fluid velocity homogenizes over the
sample thickness within the distance Lk that separates dis-
locations k and k 1 1 (we count the dislocations starting
from the film-meniscus connection inward). This holds as
long as the thickness of the permeation boundary layer that
forms downstream from the kth dislocation at the distance
Lk (of the order of 2

p
lpLk , where lp is the permeation

length lp �
p

hlp [12]), is larger than the meniscus thick-
ness �N 1 k�d at this point. For a meniscus of circular
profile and radius of curvature R, Lk � �d�2�

p
R�kd,

so that this condition is fulfilled as long as k , k�, with

k� the solution of the equation 2
q

lpL
�
k � �N 1 k��d, or,

more explicitly,

L

v = 0 vm
v *

N +k* N

Λk

meniscus

film

 region 2

 region 1

FIG. 2. Two zones of the meniscus showing the idea of the
computation of the dissipation at the boundary.
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k��k� 1 N�4 �
4l2

pR

d3 . (8)

As a consequence, the kth dislocation in region “1” �k ,

k�� is immersed in a flow of constant velocity:

yk � ym
N

N 1 k 2 1
(9)

and dissipates energy fk � mdy
2
k . Summing all these

contributions gives the dissipation in region 1:

f�1� �
k�X

k�1

fk � m
k�

k� 1 N
Ndy2

m . (10)

In region “2” �k . k��, the dislocations are so close to
each other that they form an obstacle similar to a ribbon of
zero thickness and width Lm parallel to the layers, along
which the velocity must vanish. This ribbon is immersed
in a flow of velocity yk� given by Eqs. (8) and [9]. De
Gennes has calculated the dissipation in this case [12] as

f�2� � 8m

s
2
p

q
Lmlp y2

k� . (11)

Finally, the total dissipation per unit length of the menis-
cus reads

fm �

∑
k�Nd

k� 1 N

1 8

s
2
p

q
Lmlp

µ
N

N 1 k� 2 1

∂2∏
my2

m . (12)

Comparing this to Eq. (3) gives the constant C:

C �
k�

k� 1 N
1 8

s
2
p

p
Lmlp

Nd

µ
N

N 1 k� 2 1

∂2

. (13)

The constant C is plotted as a function of N in Fig. 3, as-
suming R � 1 mm, d � 3 nm, lp � 10 nm, and Lm �
300 mm (this is the typical width for a circular meniscus).
Figure 3 shows that C is typically between 20 and 110, in
agreement with experiments [15]. We note that k� given
by Eq. (8) decreases almost linearly from 18 for N � 3
to 0 for N � 40.

Results.—We now discuss the case of a single disloca-
tion loop �n � 1�. Integrating Eq. (7) gives

t �

µ
1 1

C
RmN

∂ ∑
R 2 Ri 1 ln

µ
R 2 1
Ri 2 1

∂∏

1 C
R2 2 �Ri �2

2RmN
, (14)

where the time t is given in units of rc�ymax and Ri �
R�t � 0� is the initial radius of the dislocation. Note that
we assume in our calculation that R is constant: this is an
excellent approximation because the film volume is neg-
ligible in comparison to the meniscus volume. In the ab-
sence of dissipation at the boundary �C � 0�, one finds a
linear growth (R � t at long times when R ¿ 1). The
dissipation inside the meniscus slows down the growth of
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the dislocation: this effect is negligible in very thick films
(more than 100 layers) but becomes very important in thin
ones (typically less than 20 layers), where one finds a dif-
fusive growth R �

p
t. This behavior has been observed

experimentally and will be described in detail in a forth-
coming article. Note that, for a single dislocation loop,
the critical radius is not changed by the dissipation at the
boundary.

When two or more loops are present, the critical radius
of one dislocation depends on all the other radii, as may
be inferred from Eq. (7). In particular, for two dislocations
we find that V2 � 0 when

R2 � R2c �
NRm 1 CR1

NRm 1 C
. (15)

This equation defines the dynamic critical radius of the
loop “2” in the presence of the loop “1” of radius r1 �
R1rc. This formula shows that the critical radius of the
loop 2 increases when r1 . rc �R1 . 1� (i.e., when loop 1
is growing), whereas it decreases when r1 , rc �R1 , 1�
(i.e., when loop 1 is collapsing). This effect may be
easily understood in term of the pressure PN inside the
film. Indeed, R2c may also be written in the equiva-
lent form R2c � �Pair 2 Pm���Pair 2 PN�, where PN is
given by Eq. (6). When loop 1 is growing, PN must be
larger than Pm because the matter that is expelled from
the loop must enter the meniscus. As a consequence,
r2c . rc �R2c . 1�. By contrast, PN must be less than Pm

when the loop 1 is collapsing so that r2c , rc �R2c , 1�.
The change of the critical radius can be large, especially
in thin films (N small), when the radius of loop 1 be-
comes comparable to the radius of the meniscus. For ex-
ample, r2c � 4.5rc when N � 10, C � 77, Rm � 100,
and r1�rm � 0.5. This value of rc explains why it is
so difficult to nucleate a new loop in thin films (for in-
stance, by using the heating-wire technique described in
Ref. [9]) while another loop of large radius (with respect
to rc) is growing.

To better illustrate the concept of the dynamic criti-
cal radius and show that the coupling via the meniscus
may lead to nontrivial dynamics for two loops, we plot
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FIG. 3. The constant C as a function of the number of layers
N in the smectic film.
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FIG. 4. The growth of a small dislocation in the presence of a
big one for the following parameters: N � 20, Rm � 100, C �
110, Ri

1 � 20, and Ri
2 � 1.99 [curve �a�], Ri

2 � 2.1 [curve �b�]
Ri

2 � 2.101 [curve �c�]. The parameters were chosen for the
typical experimental case [9,10]. The radius is scaled by rc �
E�Dpd, and the time is scaled by rc�ymax.

in Fig. 4 the radius R2�t� of loop 2 as a function of time
t for different initial radii Ri

2 while another (loop 1), of
much larger radius, is growing. Our parameters are the fol-
lowing: N � 20, Rm � 100, C � 110 (see Fig. 3), and
Ri

1 � 20. Each value of Ri
1 is associated with an initial

critical radius for loop 2 given by Eq. (15). With our pa-
rameters, Ri

2c � 1.99. Figure 4 shows that three situations
occur according to the value of Ri

2. If Ri
2 , Ri

2c, loop 2 al-
ways collapses [curve �a�] as expected. If Ri

2 . Ri
2c, loop

2 starts to grow, but its later behavior can change. More
precisely, the loop grows continuously if Ri

2 . 2.1Ri
2c

[curve �c�], whereas it starts to grow and then collapses
when Ri

2c , Ri
2 , 2.1Ri

2c [curve �b�]: this nontrivial be-
havior shows that Eq. (15) can be satisfied at later times
during the evolution of the two loops. The analogy with the
Lifshitz-Slyozov model growth [4] is clear: as the first
dislocation grows, the critical radius changes continuously
and if the growth of the second dislocation is too slow its
radius can eventually fall below the critical radius set by
Eq. (15).

In conclusion, we have shown that in smectic films
the separated dislocations do not grow independently be-
cause they are coupled via the dissipation in the menis-
cus. This dynamical coupling, which does not depend on
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the distance between the dislocations, may lead to non-
trivial behavior, e.g., a change in critical radius during
the growth process of many dislocations and to the dif-
fusive growth of a single dislocation. A natural exten-
sion to this work would be the study of “step foams” (or
“arch textures”) that develop immediately after a film has
been stretched. Finally, our example could serve as a para-
digm for the physical phenomena in which dissipation at
the system boundary constitutes an essential ingredient of
the dynamics.
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