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The hard sphere disorder-order transition serves as the paradigm for crystallization. However, measure-
ments of the crystallization kinetics for colloidal hard spheres in the coexistence regime are incomplete
for early times and are affected by sedimentation. We use time resolved Bragg light scattering to char-
acterize crystal nucleation and growth in a microgravity environment on the space shuttle. In contrast to
the classical picture of the nucleation and growth of isolated crystallites, we find substantial coarsening
of growing crystallites. We also observe dendritic growth and face-centered cubic as the stable structure.
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Hard spheres, with an interaction energy of zero when
separated and infinity when touching, are a model system
for studying the structure and dynamics of liquids, crystals
and glasses, as well as the phase transition between them
[1-6]. The equilibrium phase diagram for hard spheres
of uniform size depends only on the volume fraction ¢
occupied by the spheres. Computer simulation shows that
liquid and crystalline phases coexist between 0.494 and
0.545. Below freezing, at ¢py = 0.494, the liquid state is
stable and above melting, at ¢,, = 0.545, the crystalline
state is stable. At high concentrations, particles gain en-
tropy by arranging themselves on a lattice to maximize
interparticle distance and the local free volume. Studies
of crystallization with colloids benefit from the convenient
length scale (set by particle size, ~um) and time scale
(set by particle diffusion, ~ms to days), which make light
scattering techniques readily applicable.

In this Letter, we report the kinetics of colloidal hard
sphere crystallization in the liquid-crystal coexistence
regime in a microgravity environment. For particles not
precisely density matched to the solvent, gravity can
affect crystallization through sedimentation, convection,
and viscous and compressional stresses. Among our
quantitative observations are a dendritic growth instability,
emergence of the face-centered cubic (fcc) structure as
the equilibrium structure during annealing, and strong
coarsening between crystallites during their growth stage.
The latter observation negates the conventional view of a
distinct growth phase followed by coarsening and points
to interactions between the growing crystallites.

Classical theory for nucleation and growth was adapted
by Russel [7] to hard sphere colloidal crystals and was
extended and evaluated numerically by Ackerson and
Schitzel [8]. Crystal growth is determined by coupling
the Wilson-Frenkel growth law and pressure equilib-
rium at the crystal-liquid interface with a self-consistent
concentration-diffusion field in the surrounding metastable
liquid. The set of equations was solved numerically to
determine the motion of the interface, the crystal size,
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densities, depletion zones, etc., as a function of elapsed
time. Growth exponents were observed to first undergo
long transients before approaching 1/2 or 1, the long-time
asymptotes expected for diffusion and reaction-limited
growth, respectively. Consequences of this model are
instructively illustrated also in [9] along with an analysis
of the linear growth instability. Interactions between
growing crystallites have not yet been considered.

On the experimental side, questions remain concern-
ing the nature of the crystal growth, since consistent
measurements in the coexistence regime are limited
[10]. For example, low-angle light scattering studies
in that regime [11,12] suggest that growth is pro-
portional to the square root of the elapsed time, i.e.,
diffusion limited, while similar studies on smaller
particles suggest growth exponents that vary between
diffusion and interface limited growth [13]. In a recent
study with PMMA-PHSA (polymethyl methacrylate-
polyhydroxy stearic acid) spheres [14,15], crystallization
below the melting concentration was compatible with the
classic picture of sequential nucleation and the growth of
isolated crystals. Palberg [10] reports the most complete
set of data from a combination of small angle and Bragg
scattering measurements, which yielded induction times
and nucleation rates and roughly constant growth rates at
short times. The initial growth rates, presumably before
diffusion fields develop, are qualitatively consistent with
the Wilson-Frenkel law, while the nucleation rates agree
semiquantitatively with classical theory. However, the
authors did not detect dendritic growth or coarsening at
longer times.

Our recent microgravity experiments illustrated the role
of gravity in crystallization kinetics [9,16,17]. A growth
instability in coexistence, indicated by the dendritic shape
of the crystallites, was observed photographically. It was
later interpreted from a linear stability analysis of the
growth equations for an isolated crystal. We report here
the first quantitative microgravity study of colloidal hard
sphere crystallization kinetics in coexistence.
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The Physics of Hard Sphere Experiment (PHaSE) (for
hardware details see [18-20]) flew aboard the Space
Shuttle’s Microgravity Science Laboratory twice in 1997
(STS-83 and STS-94). Eight samples can be loaded onto
the test station sequentially through the rotation of a
carousel. The index-matched glass sample cells contain
3.14 ml samples of PMMA-PHSA spheres, 2R = 600 nm
in diameter, suspended in a cis-decalin and tetralin mixture
whose refractive index is matched to the spheres. For
Bragg scattering, the optics produce an 8 mm diameter
(e”? intensity) collimated laser beam with a Gaussian
profile. The 4 mW beam passes axially through the
sample cell to illuminate the specimen. Light scattered
into a Bragg pattern by the crystallizing PMMA spheres
is focused by the hemispherical exit surface of the cell
onto a concentric fluorescent screen. Mounted on the wall
of the container is a 1032 X 1312 pixel charge-coupled
device camera which, via a flat steering mirror, records
an image of the fluorescent screen. A correction for the
projection onto the camera and angular averaging yields
the intensity / as a function of the wave number g.

The Bragg image is analyzed as follows [14]. The
static structure factor of the metastable colloidal fluid
can be described by the Percus-Yevick result Spy(q, ¢),
where ¢ is the volume fraction of the fluid phase [3,21].
We estimate the product of the particle form factor P(gq)
and the instrument factor a(g) by dividing the in-
tensity I(g,t = 0), measured immediately after
shear melting, by Spy(g,¢) at the overall volume
fraction, a(q)P(q) = I1(q,t)/Spy(q, ®). The struc-
ture factor S(g,7) is then obtained (for ¢ > 0) from
S(q,1) = I(gq,t)/a P(gq), which represents the colloidal
crystals and the fluid. The scattering from the crystal
Sc(g,t) is extracted by subtracting that from the fluid,

B(t)Spy(q, dL):
Sc(g.1) = S(g.t) — B(t)Spy(q, dr). (1)

The fluid contribution as represented by the scale factor
B(t) is determined by decreasing B(¢) from unity until
Sc(g,t) approaches zero at small and large g. Here, ¢y,
the volume fraction of the fluid regions in the sample, de-
creases with time as more and more spheres are converted
from fluid to crystals. As crystallization progresses the
structure of the crystals changes and S.(g, ) no longer falls
to zero at our largest g value (2gR < 9) . We then choose
B(t) such that (i) at low g, S. — 0, (ii) S(g) overlays fairly
well at low g with the previous (time step) measurement,
and (iii) the structure factor of the crystal is consistent
with hexagonal planes of spheres with a stacking prob-
ability a. To assess the last factor, we calculated pow-
der patterns from the expressions of Wilson [22] (see also
[23]) and the orientational-averaging procedure described
by Brindley and Méring [24]. A Gaussian function plus
constant background was fit to the {111} peak [¢gR ~ 7
(see Fig. 1)] to estimate the maximum g,,(r) and the half
maximum width Ag(z), as well as the low (g;) and high
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FIG. 1. The structure evolution of the sample with volume

fraction ¢ = 0.528. fcc {200} peak emerges during the crystal
annealing with the equilibrium melting volume fraction ¢, =
0.545 indicating fcc as the equilibrium crystal structure.

(g2) extent of the peak. The fraction X(z) of the sample
converted from fluid to crystal was calculated from

q2
X() = ¢ [ Se(q. 1) @)
q

1
with ¢ a constant and the background excluded. The aver-
age linear dimension of the crystal (in units of the particle
diameter 2R) is given by

L(t) = wk/Aq(D)R, ©)

where k = 1.155 is the Scherrer constant for a cubic
shaped crystal. The number density of (average size)
crystallites is estimated as

N.(t) = X(1)/L°(1). @)

Finally, the volume fraction ¢.(¢) of a fcc (or any equiva-
lently close-packed) crystal is related to the location of
gm(t) of the {111} reflection using

2
b = W[Qm(l‘)RP- (5)

Several significant results were obtained experimentally.
Simulations show that the fcc structure is most stable for
¢ near 0.7404, but just above melting, with ¢ = 0.545,
the situation is less clear [25,26]. A recent calculation
coupled with simulations [27] found the entropy differ-
ence between fcc and hcp stackings to be 90.2 £ 4.3
in units of 10 kg per sphere near melting, predicting the
ground state to be fcc. Experiments on hard sphere col-
loidal crystals in normal gravity found a mixture of rhcp
(random hexagonal close packing) and fcc with more rhep
[28]. The CDOT (colloidal disorder-order transition) ex-
periment, which had less scattering angle resolution than
PHaSE, showed the {200} fcc Bragg peak to be completely
absent in microgravity and concluded that growth in mi-
crogravity yields almost pure rhep crystals [16]. Here, as
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shown in Fig. 1, we see the gradual growth of an fcc {200}
peak at 2gR ~ 8, beginning 3650 seconds after the initia-
tion of crystallization when the liquid-to-crystal conver-
sion has completed. This fcc peak continues to grow with
time during the two week duration of the experiment. With
increasing volume fraction ¢, fcc shows up sooner [29].
Thus, we can conclude that fcc is the stable equilibrium
structure for hard sphere crystals, but requires the very
slow growth rates associated with annealing [30].

Figures 2(a)—2(d) presents the change in the average
crystallite size, the number of crystallites, the total crys-
tallinity, and the volume fraction of the crystalline and liq-
uid phases, respectively, for ¢ = 0.528. Several important
conclusions follow.

Interaction between two crystallites: growth and coars-
ening.—One of the salient features, which has not been
emphasized in previous experiments, is the existence of
strong interactions between individual crystallites. In
Fig. 2, from t = 150 s to about 800 s, the size of the crys-
tallites increases linearly as L = 9, 8 = 0.99 + 0.05,
while the crystallinity X over this interval increases at a
rate considerably less than L. Thus the number of crys-
tallites decreases roughly as N =t~ 7,y = 2.6 = 0.2.
This is unusual and contrasts with the classic theory that
focuses on the nucleation and growth in size of isolated
crystallites. We identify this process as “simultaneous
coarsening and growth” in which small crystallites
shrink and eventually disappear, causing the number
of crystallites to decrease, while large crystallites keep
growing, causing the measured average crystallite size
to increase with time. The growth exponent for the size
is about unity, resulting from the combination of normal
diffusion-limited growth and coarsening apparently due
to direct transport from small to large crystallites [31].
Because of the different curvatures of these crystallites,
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FIG. 2. Crystallization kinetics for a sample in the liquid-
crystal coexistence region with ¢ = 0.528.  Shown are
(a) average crystal size L, (b) number density of crystallites N,
(c) crystallinity X, and (d) the volume fraction of spheres ¢
in crystal (circles) and liquid (triangles) phases as a function
of time after shear melting. The STS-94 data are shown as
symbols with + center and the STS-83 data are others.
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the smaller crystallites are under higher pressure from the
Laplace or surface tension term and hence have a high
internal volume fraction value. Therefore, the correspond-
ing equilibrium liquid volume fraction surrounding a
small crystallite is relatively higher than that surrounding
a large crystallite. Mass transport, via density gradients in
the intervening fluid dispersion, moves particles from the
small crystallites to the large crystallites.

Growth instability: dendrites.—This sample has a very
distinctive feature. That is, at a late stage (¢ > 800 s),
N, increases again after rapidly decreasing during
100-800 s, as a consequence of the average crystallite
size L changing only slightly, while the crystallinity X
increases dramatically. In comparison, this phenomenon
is totally absent in gravity (please refer to [32]) and
cannot be interpreted as a nucleation process. We iden-
tify it as an instability in the diffusion-limited growth:
dendritic crystal growth. Dendrites, the primary features
of metal alloys, are of great technological importance
and scientific interest. In colloidal systems, dendrites
were first reported for charged colloids near a surface
[33]; the CDOT experiment first observed hard sphere
dendrites [16]. Figure 3 shows dendrites in all CDOT
coexistence samples. The dendrites grown at ¢ = 0.52
in a reflight of CDOT on the Mir Space Station remained
intact with negligible or, at least, incomplete annealing
after 2.5 months. In normal gravity fragile dendritic arms
are prevented from growing by sedimentation [16] due to
either viscous stresses on the crystallite or fluid flow that
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FIG. 3 (color). Photographs show the dendrites grown in
CDOT samples with various volume fractions (top; middle
inset: CDOT the second flight sample with ¢ = 0.516) and in
a sample with ¢ = 0.520 on the Mir Space Station (bottom).
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alters the diffusion field. Experiments on earth (without
density matched samples) seldom observe the growth of
dendrites.

A linear stability analysis [9] of hard sphere crystal
growth indicates a dendritic instability at ~13r. (r. is the
critical nucleus) for CDOT samples at ¢ = 0.504, similar
to the instability at ~7r, in molecular systems [34]. Fig-
ure 2 suggests the critical nucleus to be about 10 times the
diameter of the sphere. i.e., 7. = 10 X 2R. Att = 800 s,
the average crystallite size is about 70 times the diameter
of the sphere, i.e., r¢;ir = 70 X 2R. Therefore, the growth
instability takes place at about r¢ri; = 7r., which is in rea-
sonable agreement with above-mentioned theoretical and
experimental results.

We can also estimate other properties of the dendrites.
Figure 2 shows that the apparent number density of
the crystallites increases from 1077(2R)™% to 6 X
1077(2R) 3 from 800 to 3000 s. During this interval, L
changes only slightly while the crystallinity X changes
from 0.02 to 0.4, i.e., a 20-fold increase.

In a crude model we imagine that once the size surpasses
rerit further growth is predominantly from the dendritic
arms. We then have

X o« NyN.p>L, o 1*? (6)

with the number of arms N,, the arm radius p, and the
arm length L,. In this interpretation, the width of the
(angle averaged) Bragg peak (1/L in Fig. 2) is =1/p, and
p grows as alow power of time p ~ L ~ ¢'/!2, The maxi-
mum dendrite growth rate under marginal stability hypoth-
esis is dL,/dt = 1/p, then L, o t''/12. [This can also
be obtained from mass conservation for the growing arm

[9]: (d’c - ¢i)%p2La = Dpz((l)fp;@)’ where ¢, ¢f’ oi
are the volume fractions in the crystal, liquid, and at
the interface, respectively, and D is the diffusion coeffi-
cient.] Combined with the equation above for X we have
N, = "1, From 1y = 800 s to #; = 3000 s, X ~ (p3 +
N.p’L,)/ pS increases by 20 which gives the number of
arms N, ~ 6 at long times.

In summary, colloidal hard sphere crystallization has
been studied without gravity. The fact that an fcc structure
develops in microgravity as the samples anneal strongly
suggests fcc to be the equilibrium phase for hard sphere
crystals. The high density of crystallites affects the crys-
tallization process quantitatively and qualitatively [32]. A
picture with single crystallites growing in a metastable liq-
uid significantly misses much of the kinetics that we have
observed. A complete picture must involve the interaction
between diffusion fields of the growing crystallites.
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