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Path Instability of a Rising Bubble
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We model the problem of path instability of a rising bubble by considering the bubble as a spheroidal
body of fixed shape, and we solve numerically the coupled fluid-body problem. Numerical results
show that this model exhibits path instability for large enough values of the control parameters. The
corresponding characteristics of the zigzag and spiral paths are in good agreement with experimental
observations. Analysis of the vorticity field behind the bubble reveals that a wake instability leading to
a double threaded wake is the primary cause of the path instability.
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Many experiments performed over the last 50 years
have demonstrated that millimetric bubbles rising in low-
viscosity liquids do not generally follow a straight
trajectory [1]. In the regime where bubbles exhibit
approximately oblate spheroidal shapes, they rather rise
in zigzag within a given vertical plane or spiral around
a vertical axis. In pure water the transition from straight
path to zigzag path occurs when the equivalent diameter
of the bubble exceeds 1.8 mm, which corresponds to a rise
Reynolds number of about 660 and an aspect ratio about
1.85 [2]. Nevertheless, tiny quantities of surface-active
agents suffice to lower dramatically the critical Reynolds
number, and values down to 200 have frequently been
reported. Several theoretical approaches have been
attempted to understand the origin of the transition from
straight path to zigzag or spiral path. Owing to the
large value of the rise Reynolds number, most of them
described the flow past the bubble as irrotational and took
into account effects of gravity, surface tension, and liquid
inertia to determine the bubble shape in such a way that
the condition of constant pressure within the bubble is
satisfied at any time. Unfortunately, predictions of these
theories conflict severely with experimental evidence. For
instance, spiral paths with pitch and diameter close to
those observed experimentally may be predicted, provided
a substantial drift angle exists between the rise velocity
and the minor axis of the bubble [3]. However, detailed
measurements prove that this angle is almost zero all
along the path [4]. Saffman [5] used similar assumptions
to determine the flow and bubble shape near the front
stagnation point and concluded that the rectilinear motion
becomes unstable when the aspect ratio of the bubble
exceeds 1.2. He then suggested existence of a wake
behind the bubble and conjectured that the instability of
the rectilinear motion may trigger the instability of the
wake. Recent experiments have indeed demonstrated that,
under certain conditions, oblate spheroidal bubbles are
followed by an open wake (see [1]), even in the absence
of any contamination of the bubble surface by surfactants
[6]. The dynamics of this wake may have a crucial effect
on the path of the bubble, as periodic vortex shedding
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has been proved to have on the path of two-dimensional
bubbles rising in a Hele-Shaw cell [7]. Therefore, in
contrast with available theories, our goal in this Letter
is to disregard any effect associated with the small-scale
deformability of the bubble in order to determine whether
the dynamics of the three-dimensional wake behind an
oblate spheroidal bubble of fixed shape are sufficient to
explain path instability and to produce zigzag and spiral
paths with realistic geometrical characteristics.

We explore the possibility just described by solving nu-
merically the unsteady three-dimensional incompressible
Navier-Stokes equations in a large domain of fluid sur-
rounding a fixed-shape bubble and we couple these equa-
tions with the force and torque balances that determine the
motion of the bubble. Referring velocities to a fixed ori-
gin and to axes rotating at the same rate as the bubble, the
Navier-Stokes equations take the form [8]
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1 V 3 V 1 = ? �V�V 2 W �� � 2
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1 n=2V ,

with W � U 1 V 3 r, r being the current position mea-
sured from the geometrical center of the bubble whose ve-
locity and rotation rate are U and V, respectively. Since
we assume that the bubble behaves as a nondeformable
body and is filled with a gas of negligible viscosity, its
surface is submitted to an impermeability condition and a
shear-free condition, namely

V ? n � W ? n, n 3 ��=V 1 T=V � ? n� � 0 ,
(2)

n being the unit normal to the surface. We assume V � 0
on the upstream part of the fictitious outer boundary lim-
iting the computational domain, and use an absorbing
boundary condition on the downstream part of this bound-
ary to allow velocity disturbances in the far wake to leave
freely the numerical domain. During a time step of the
resolution of (1),(2), U and V keep constant values. Then,
© 2001 The American Physical Society 014502-1
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at the end of the time step, the motion of the bubble is de-
duced from the Kirchhoff equations which may be rigor-
ously generalized to viscous flows [8,9]. Since the bubble
is assumed to have zero inertia, these equations reduce to

� ?
dU
dt

� Fv 2 rV g 2 V 3 �� ? U� ,

� ?
dV

dt
� Gv 2 V 3 �� ? V� 2 U 3 �� ? U� ,

(3)

where g denotes gravity, V is the volume of the bubble,
� and � are second-order diagonal added-mass tensors
characterizing the inertia of the fluid set in motion by a
translation and a rotation of the bubble, respectively, and
Fv and Gv are the instantaneous force and torque resulting
from the existence of vorticity in the flow. The right-hand
side of (3) is straightforwardly obtained at the end of the
current time step by integrating the local stress and moment
over the bubble surface. The components of � and �
involved in the left-hand side are evaluated once and for all
from irrotational flow theory at the very beginning of the
computation because it is now established that added-mass
tensors are not affected by finite-Reynolds-number effects
[1,8,9]. Details about the numerical techniques involved
in the resolution of (1)–(3) may be found in [8].

The two control parameters governing the physical prob-
lem are the Galileo number Ga � kgk1�2Req

3�2�n and the
aspect ratio x � b�a, Req � �ab2�1�3 being the equiva-
lent radius of the bubble whose major and minor axes have
lengths b and a, respectively. Most numerical simulations
reported below are carried out for Ga � 138, correspond-
ing to an air bubble with Req � 1.25 mm rising in water
under standard conditions. The bubble and the surround-
ing liquid are initially at rest; the bubble is then set in mo-
tion by buoyancy. A small sinusoidal perturbation lying in
an arbitrary vertical plane and having a relative amplitude
´ � 1024 and an arbitrary frequency is superposed to the
gravity field to trigger the path instability.

Observed trajectories are represented in Fig. 1. Below
a certain critical aspect ratio xc � 2.2 the trajectory re-
mains straight and vertical and the terminal velocity tends
to a constant value resulting from a balance between buoy-
ancy and viscous drag. Then, within a narrow range of as-
pect ratios, a plane zigzag with varying amplitude appears.
Finally, a regular planar zigzag of constant amplitude is
obtained for x $ 2.35. As shown in Fig. 2(a), the satu-
rated amplitude is almost independent of x in the range
2.35 # x # 2.50. It might well be that the bifurcation just
described is subcritical, but additional computations are re-
quired to confirm this possibility. Another series of com-
putations was carried out with x maintained at the fixed
value x � 2.5 and Ga varied in the range 20 , Ga , 60.
As revealed by Fig. 2(b), the zigzag occurs beyond a
threshold Gac � 30; for Ga # 50 its amplitude increases
proportionally to �Ga 2 Gac�1�2, a behavior typical of a
supercritical Hopf bifurcation. Hence we conclude that the
two transitions by which the zigzag stage can be reached
014502-2
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FIG. 1. Evolution of the path of a bubble with Ga � 138.
Top: Position of the geometric center; bottom: angle between
the minor axis and the vertical direction. From left to right:
x � 2.30, x � 2.40, x � 2.50.

have a different nature, depending on what control parame-
ter is maintained fixed.

As soon as we detect the growth of the transverse mo-
tion, we change the plane perturbation applied to g into
a rotating perturbation with a vertical axis, while keep-
ing the amplitude and the frequency of this perturbation
unchanged. The bubble goes on zigzagging, but its mo-
tion also develops a slowly growing component perpen-
dicular to the plane of the zigzag. Then we switch off
the perturbation. Ultimately, the two horizontal compo-
nents of the motion reach identical magnitudes and the
bubble goes on spiraling around the vertical axis, as shown
in Fig. 3. It is worth mentioning that we also tried to
trigger directly the spiraling mode by applying the ro-
tational perturbation as soon as the bubble was released
from rest. It turned out that the bubble selected a pref-
erential plane within which it started zigzagging with the
characteristics given above. Summarizing, the foregoing
observations show that the system exhibits two symme-
try breakings corresponding to the rectilinear/zigzag and
zigzag/spiral transition, respectively. So far we have al-
ways observed that a zigzag path of constant amplitude
eventually changes into a spiral. The zigzag is always
observed first because its growth rate is much larger than
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FIG. 2. Evolution of the relative amplitude A�2Req (�) and
Strouhal number St � 2f�Req�g�1�2 (�) of the zigzag. Left:
Ga � 138, variable x; right: x � 2.5, variable Ga.
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FIG. 3. Path of a zigzagging/spiraling bubble (Ga � 138,
x � 2.50).

that of the spiral (Fig. 4). This scenario is consistent with
experimental observations, since most authors detect only
zigzagging paths, sometimes followed by a transition to a
spiral path, while the reverse transition has never been re-
ported (see [1]). For x � 2.5 and Ga � 138, we observe
a saturated crest-to-crest amplitude A�2Req of the zigzag
motion about 4.8, a Strouhal number St � 2f�Req�g�1�2

based on the frequency f of the zigzag about 0.09, and a
maximum angle uM between the path and the direction of
gravity about 29±. In the spiral stage these values change to
A��2Req� � 3.1, St � 0.108, and uS � 27±. A compila-
tion of experimental observations reported for both types
of path indicates A�2Req [ �3.0, 4.0�, St [ �0.10, 0.15�,
uM and uS [ �20±, 30±�, which leads us to conclude that
the predictions of our model are realistic.

Examination of the streamwise vorticity field plotted in
Fig. 5 highlights the origin of the path instability and es-
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FIG. 4. Evolution of the two horizontal components of the
bubble velocity (Ga � 138, x � 2.50); the rotating perturbation
has been introduced at t�g�Req�1�2 � 40 and switched off at
t�g�Req�1�2 � 170.
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tablishes a one-to-one correspondence between the wake
structure and the nature of the path. While the wake is axi-
symmetric for x , xc [Fig. 5(a)], vorticity is shed down-
stream of the bubble under the form of a double threaded
wake for x . xc [Figs. 5(b)–5(c)]. In the zigzag stage,
the vorticity contained in the two counterrotating vortices
changes sign twice during a period of the path, crossing
zero when the curvature of the path vanishes. This is a
clear indication of a strong coupling between the rotation
of the bubble and the structure of its wake. In the spiraling
stage [Fig. 5(c)] the two threads tend to wrap up around
one another and the vorticity contained in each of them
keeps a constant sign all along the trajectory. Similar wake
structure has already been reported in recent experiments
in the same range of Reynolds number [6]. The reason why
varying x has a direct effect on the wake structure follows
directly from the fact that the local value of the surface
vorticity on a curved shear-free surface is twice the prod-
uct of the curvature by the tangential velocity [10]. Using
this argument it can be shown that for large values of x,
the maximum vorticity on a spheroidal bubble of imposed
aspect ratio increases as x8�3 for large Reynolds numbers,
so that the maximum vorticity corresponding to x � 2.50
is about 20% larger than that corresponding to x � 2.30.
Based on this remark, the following physical scenario may
be proposed for explaining the evolution of the whole sys-
tem. For small enough aspect ratios, the amount of vor-
ticity generated on the bubble surface is moderate and can
be evacuated downstream under the form of an axisym-
metric wake by the combined action of viscous diffusion
and axisymmetric transport. Beyond a certain critical as-
pect ratio xc�Ga�, the above mechanism is no longer suf-
ficiently efficient because too much vorticity is generated
at the bubble surface. Then the axisymmetric wake be-
comes unstable and breaks into a double-threaded open
wake. In the zigzag configuration, the amount of vorticity
shed downstream is still limited by the fact that the double-
threaded structure vanishes twice during a period of the
motion. Consequently, the spiral path emerges eventually

FIG. 5. Isosurfaces vx�Req�g�1�2 � 62.7 of the streamwise
vorticity (Ga � 138; the darker thread corresponds to the posi-
tive value). (a) x , xc , rectilinear path; (b) x � 2.50, zigzag
path; (b9) same, half a period later; (c) x � 2.50, spiral path.
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as the most stable configuration, since it is the one in which
vorticity can be evacuated with the greatest efficiency.

We note that increasing x for a given Ga increases
the amount of vorticity generated on the bubble and the
anisotropy of added-mass coefficients, while maintaining
the capacity of the flow to evacuate vorticity at a given
level. In contrast, for moderate values of Ga, increasing
Ga for a given x increases the efficiency of both the gen-
eration and the evacuation of vorticity, while maintaining
the anisotropy of the body constant. Thus, the strength
of the two destabilizing mechanisms (vorticity generation
and anisotropy of the body) increases during the fixed-Ga
transition, while the fixed-x transition corresponds to an
increased strength of the stabilizing mechanism (vorticity
evacuation) and of only one of the destabilizing mecha-
nisms. This is probably why the saturated amplitude of
the zigzag is much larger for a given value of �x 2 xc��xc

than for the same value of �Ga 2 Gac��Gac.
Figure 6 shows the evolution of the bubble Reynolds

number Re � 2ReqkUk�n in the case Ga � 138, x �
2.5. In the rectilinear stage, Re increases regularly up
to the value Re1 � 1035. Then the Reynolds number
experiences a sharp drop and oscillates around the value
Re2 � 835 during the zigzag stage. A second drop, lead-
ing to the final value Re3 � 600, occurs when the bubble
enters the spiral stage. This evolution clearly shows that
each of the two path transitions is associated with a large
increase of the drag resulting from an increase of the dissi-
pation in the wake. For the particular case shown in Fig. 6,
the final drag is about thrice as large as the “steady state”
drag corresponding to the end of the rectilinear stage.

The most questionable assumption of our model is un-
doubtedly that of a constant aspect ratio. Clearly, given
the evolution of U, the Weber number We � rU2Req�s

(s denoting surface tension) undergoes a significant drop
at each of the two symmetry breakings of the trajectory.
Consequently, the oblateness of a real air bubble cer-
tainly decreases during each of these transitions. Since
the drag coefficient is an increasing function of x, we
guess that this change of shape tends to soften the drag
increase described above; it can also delay the correspond-
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FIG. 6. Time evolution of the bubble Reynolds number (Ga �
138, x � 2.50).
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ing transition by lowering vorticity generation. In contrast,
assuming a frozen shape during the zigzag and spiral stages
is certainly correct, as shown experimentally in [4]. An-
other feature agreeing with [4] is the smallness of the in-
stantaneous drift angle b between the minor axis of the
bubble and the velocity U. In the computations b never
exceeds 2±, suggesting that deformations due to transverse
motions may indeed be neglected compared to those due
to the streamwise velocity.

The results obtained in the present investigation demon-
strate that wake instability and anisotropic added-mass
effects associated with oblate spheroids suffice to explain
path instability of millimetric bubbles rising in low-
viscosity liquids. Small-scale deformations which have
been totally disregarded here appear to be only a sec-
ondary ingredient of the problem. They can probably
influence quantitatively most of the characteristics of
path instability, but can hardly change the nature of
the mechanisms described here. Despite the successful
qualitative comparison between the results of the present
model and those of available experiments, many points
still require careful investigation. For instance, the precise
limits of existence of the zigzag and spiral states in the
�Ga, x� plane must be thoroughly specified and the nature
of the bifurcations between two successive states must
be completely determined. The connection between the
marginal curves xc�Ga� of the present problem and the
marginal curve x�Re� determining the region of wake in-
stability of a spheroidal bubble fixed in the fluid must also
be investigated to determine the effect of the additional
degrees of freedom due to the free translation and rotation
of the body. Finally, it would be highly desirable to derive
a simple but realistic model for the rotational force and
torque Fv and Gv in Eqs. (3), in order to model the whole
problem with a system of coupled ODE in the spirit of the
heuristic model proposed in [11] for describing the free
fall of two-dimensional bodies.
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