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Oscillating Fracture Paths in Rubber
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We have found an oscillating instability of fast-running cracks in thin rubber sheets. A well defined
transition from straight to wavy cracks occurs as the amount of biaxial strain increases. Measurements
of the amplitude and wavelength of the oscillation near the onset of this instability indicate that the

instability is a Hopf bifurcation.
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When a balloon is pricked, a crack races around it, slic-
ing the material into fragments. Surprisingly, instead of
running straight the crack wiggles, leaving a wavy pat-
tern on the edges of the fragments. This effect has likely
been observed before, but we have found only one docu-
mented case [1]. We have constructed an experiment
to study this phenomenon. The wavy pattern is the re-
sult of a straight-running crack losing stability to a new
state in which the crack oscillates about its mean direction
of motion.

The field of dynamic fracture was spawned by theoreti-
cal attempts to understand why straight-running cracks in
brittle materials bifurcate [2]. Despite the great advances
in dynamic fracture since then [3], predicting the path
of a rapidly moving crack is beyond the current theory.
Here we report the first experiments showing that a crack
moving at speeds comparable to the speed of sound can
spontaneously begin to oscillate. This phenomenon is dif-
ferent from the branching instability because biaxial strain
is essential, and therefore studying this phenomenon pro-
vides a new avenue to attack the larger issue of crack path
selection.

The applicability of fracture mechanics to elastomers
has been established [4—6], the time-dependent character-
istics of elastomer fracture have been examined [7,8], and
crack speeds under varying degrees of biaxial strain have
been investigated [9,10]. None of these studies, however,
has explored the transition from a straight to a wavy crack
path. Our aim here is to characterize this instability.

Our experiments were done with flat sheets of rub-
ber in biaxial tension. We used samples taken from a
single roll of 0.18 mm thick natural latex sheet (100% cis-
polyisoprene [11]). Our apparatus, inspired by a similar
technique developed by Treloar [12], is shown in Fig. 1.
Tabs were prepared on 32.5 cm X 12.7 cm sheets by cut-
ting 1.2 cm long slots, perpendicular to the edge, 2.5 cm
apart [Fig. 1(a)]. The tips of these incisions were rounded
by melting them with a soldering iron to prevent cracks
from initiating at these points during loading of the sample.

The experiment proceeds by gripping the tabs and in-
crementally increasing the load simultaneously in both x
and y directions until the desired strain level is reached.
The applied strain is on the order of 200%, uniform within
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PACS numbers: 46.50.+a, 81.05.Lg, 83.60.Uv, 89.75.Kd

5%, and always chosen so that the strain in the y direc-
tion, €,, is greater than the strain in the x direction, €.
Strain is measured from the dilation of the grid; deviations
from uniform strain are identified from the distortion of the
grid and minimized by individually adjusting each clamp.
Once the desired strain level is attained, the rubber sheet is
sandwiched between a pair of 10 cm X 66 cm rectangu-
lar steel frames [Fig. 1(b)]. The loading is then maintained
entirely by the frames.

Each run is initiated by pricking the sheet with a pin at
the point marked X in Fig. 1(b). As shown in Fig. 2, the
crack tip that forms is sharp and wedge-shaped [13]. The
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FIG. 1. The experimental apparatus for straining rubber sheets
along two axes. (a) A grid is drawn on the sample and clamps
are attached to precut tabs along the sample’s edges. The load
is applied to the sample through the clamps, which are attached
by wires to the rigid outer frame. (b) After the sheet has been
slowly extended in the x and y directions, it is clamped by an
inner rectangular frame. The sheet is distorted near its edges
but not inside the inner frame. After clamping the sheet, it is
punctured with a pin at the point marked X. Since the edges of
the sheet are clamped, no energy flows into it during fracture.
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FIG. 2. Snapshot of the tip of a propagating crack. The crack is
moving from left to right. The initial conditions were €, = 2.3
and €, = 1.8.

crack travels down the centerline, the midpoint between
upper and lower edges of the frame.

The speed of the crack, v, depends on the strain state of
the sheet. The longitudinal wave speed in the x and y direc-
tions, ¢, and cy, also depend on the strain state and are gen-
erally not equal. The crack speed, measured by high-speed
video, varies between 37 and 60 m/s and is reproducible
to within 10%. Over a similar strain range the longitudi-
nal sound speed varies between 54 and 108 m/s * 5% as
measured by a time-of-flight method [14]. The ratio v/c,
ranges from 0.4 to 0.6. Since the crack speed is com-
parable to the speed of sound, the crack propagation is dy-
namic rather than quasistatic.

Depending on the initial strain conditions, the crack runs
straight or oscillates about the centerline. The inner frame
makes steady states possible because the energy stored per
unit length inside the framed sample is constant ahead of
the crack and also constant in its wake. Hence as the crack
tip advances it consumes a fixed amount of energy per
unit length of advancement. Indeed, we observe that af-
ter an initial transient period, an oscillating crack propa-
gates with a wavelength and amplitude that are constant to
within 10%.

Examples of the paths of a straight and a wavy crack
are shown in Fig. 3. These curves were obtained by scan-
ning the cracked sheet with a flatbed scanner and applying
an edge-finding algorithm to the resulting image. Tran-
sients typically dominate the first 15% of the crack length.
During this transient regime a wavy crack’s oscillations
grow to saturation and a straight crack recovers from any
off-centerline starts, as shown in the inset of Fig. 3(a).

Rubber sheets subjected to different initial strain states
were fractured, and the crack path was found to undergo
a transition from straight to wavy with increasing biaxial
strain. Since the applied forces are purely tensile, the strain
state is fully described by €, and €, [15]. The results
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FIG. 3. (a) A straight crack with €, = 1.2, €, = 2.0 (inset

shows the initial kink that is sometimes observed) and (b) an
oscillating crack with €, = 1.3, €, = 1.8 are shown in the final,
unstrained state. In both cases, the crack initiated at the left edge
and propagated to the right.

of these runs are shown in the phase diagram in Fig. 4.
The control parameter range was limited by experimental
difficulties found at the highest and the lowest values of
€,. For €, > 2.6 it became impossible to complete a run
because cracks would spontaneously form at the high stress
point between the tabs. For €, < 1.4 it became impossible
to distinguish between straight and wavy cracks because
the wavelength became comparable to the length of the
sample, as indicated by the trend in the inset of Fig. 4.

We measured the average wavelength (A) and the aver-
age amplitude (A) of the wavy edge while holding €, =
2.4 fixed and varying €, from 1.2 to 2.0. From the digitized
curves we extracted the wavelength as the peak-to-peak
distance in the x direction and the amplitude as half the
peak-to-valley distance in the y direction. These quanti-
ties, averaged over multiple runs with the same initial con-
ditions, are plotted in Fig. 5.

The amplitude grows as the square root of the control
parameter with a critical value of x strain, €, = 1.36. Fur-
thermore, if we assume that the crack travels with a con-
stant velocity v in the x direction, then the wavelength is
equal to 277v/w, where w is the frequency at which the
crack tip oscillates in the y direction. Since at onset of
the instability the wavelength is nonzero, the frequency at
onset is nonzero. Hence, we conclude that the observed
transition is consistent with a Hopf bifurcation [16,17].

The waveform of the crack path is approximately sinu-
soidal over a wide range of amplitudes (0.03 to 0.39 cm)
and wavelengths (0.56 to 5.0 cm). Figure 6 illustrates this
point with two waveforms taken from the runs used to con-
struct Fig. 5. These curves correspond to the first data
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FIG. 4. (a) A phase diagram showing the two observed states:
oscillating cracks e, and straight cracks o, as a function of the
initial strain state, €, and €, (frame size = 10 cm X 66 cm).
The solid line, drawn to guide the eye, shows the phase bound-
ary between straight and wavy cracks. Data were not taken
in the region below the dashed line because there the princi-
pal direction of crack motion is across the width of the frame.
Ambiguous points © appear at high values of €, because differ-
ent runs with the same initial conditions produced both straight
and wavy cracks; ambiguous points at low values of €, result
from the difficulty in discriminating between straight and wavy
cracks. (b) Wavelength versus €,, normalized by e,, for fixed
€, = 1.4. The solid line is a fit of the data to A/(e,/€e, — 1),
which yields A = 0.58.

point after the transition and the last data point in Fig. 5.
The waveform near the transition is almost a perfect sinu-
soid, further bolstering the identification of the transition
as a Hopf bifurcation. The waveform far from the transi-
tion shows sizable deviations from a sinusoid; it is skewed
in the direction of propagation.

In addition to our quantitative results, we explored the
possibility that the oscillation arises from out-of-plane vi-
brations, strain crystallization, and interaction of the crack
tip with waves reflected from the boundary. In one ex-
periment we reduced out-of-plane motion by sandwich-
ing the rubber sheet snugly between two glass plates after
the sheet was stretched to the loaded state. In another ex-
periment we loaded the sheet as usual and then forced a
cylindrical surface into the sheet so that the sheet was ev-
erywhere pressed into contact with the surface; thus, the
only out-of-plane motion possible was away from the sur-
face. Neither experiment stopped the crack from oscillat-
ing; hence out-of-plane motion is not the source of crack
oscillations.

We also considered the effect of strain crystallization,
which is the propensity of aligned polymer chains to form
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FIG. 5. Amplitude (A) (o) and wavelength (A) (A) are plotted

across the transition from straight to oscillating cracks (e, =
2.4; see Fig. 4). The solid line through the amplitude data is a
square root fit.

crystalline domains that locally stiffen the material [12].
Since natural rubber is well known to strain crystallize,
we tested thin sheets of nitrile rubber (a cross-linked
copolymer of butadiene and acrylonitrile), which do not
strain-crystallize [18]. We found that wavy cracks were
nonetheless produced in nitrile; this indicates that strain
crystallization is not the source of the instability.

In brittle materials, waves originating from the crack tip
and reflecting from the boundaries produce periodic mark-
ings such as those identified as Wallner lines [19]. If such
a mechanism were active in rubber, one would expect an

FIG. 6. Profiles of individual peaks from two different runs are
scaled by their amplitude and wavelength and plotted together.
A sine curve (solid line) is plotted for comparison. (e: €, = 1.4,
€ =24,A=003cm, A =0.75cm; ®: € =20, ¢ =24,
A =0.13cm, A = 1.02 cm).
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oscillatory wavelength A = (2hv/c)/\/1 — v2/c?, where
h is the distance to the boundary. Given that the vertical

boundary is 5 cm from the crack and that our measure-
ments show v/c > 0.4, it follows that A > 4 cm. Yet,
we observe wavelengths down to 0.85 cm (in the strained
state). Thus waves reflecting from the boundary cannot
account for the oscillations of the crack.

In conclusion, we have found an instability in the di-
rection of crack propagation in a rubber sheet: subjected
to sufficient biaxial strain the crack will oscillate about its
mean direction of propagation. We have shown that this
instability can be characterized as a Hopf bifurcation. We
have ruled out strain crystallization, out-of-plane motion,
and wave reflections from the boundary as possible mecha-
nisms for the oscillation.
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