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Dynamics of Grain Avalanches
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We study the nucleation and the growth of avalanches in a model experimental system consisting
of a bidimensional packing of noncohesive grains positioned in a rotating drum. We show that the
avalanche mass increases linearly in time, and that the growth rate is governed by the velocities of
the two up and down fronts. The upper front is shown to propagate upwards with a velocity which is
equal to the averaged velocity of the flowing grains, whereas the velocity of the downslope propagating
front is approximately equal to twice the avalanche velocity. We describe simple mechanisms which
quantitatively account for the observed dynamical properties.
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The control of particulate flows is most important
both for improvements of industrial processes and for
the prevention of natural disasters, such as avalanches or
landslides [1,2]. Understanding the physical mechanisms
leading to triggering and growth of avalanches is thus of
major interest. We focus here on the avalanche properties
of a model system of noncohesive grains. Such model
systems were previously shown to manifest different types
of flows, according to the magnitude of the supply flux
[3]. For a large flux, the flow appears to be continuous, in
opposition to the regime of weak supply flux for which
the flow displays a series of discrete avalanches. The
existence of these two different regimes originates in
the requirement for the free surface slope to overpass a
certain angle gy to initiate the flow. If the spontaneous
discharge rate of the surface flow is not balanced by the
uphill supply flux, the slope progressively decreases and
the flow stops (at angle 6g,p). Then a new avalanche is
generated after the delay time required to store enough
matter and to increase again the slope up to the angle
Osiart- On the contrary, if the supply flux is larger than the
natural discharge rate of one avalanche, the continuous
flow regime is encountered.

Such description of the discrete avalanche process enters
the scheme of the ubiquitous “relaxation oscillations.” Sev-
eral authors developed an analogy with the stick-slip mo-
tion of a block relying on a frictional substrate and bound
to a spring pulled with a constant velocity [4]. In solid
friction, the stick-slip behavior proceeds from the differ-
ence of magnitude between the “static coefficient of fric-
tion” prge and the “dynamic coefficient of friction” wayn
(Mstat = Mdyn). Within this analogy, the elastic energy
stored in the spring corresponds to the gravity potential
energy of the heap, and the intermittent block velocity
to the flux. From the relation between Coulomb’s fric-
tion coefficient of the bulk material and the free surface
slope, tanfyu, can be identified with gy, and tanfgop
with (ZMdyn - ILLStat)'

Another interesting approach is that of Bouchaud,
Cates, Ravi-Prakash, and Edwards (BCRE), who con-
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sidered the grain avalanche as a multiplicative process
[5]. They considered two coupled variables, the thickness
h of the immobile substrate and the thickness R of the
flowing layer (both expressed in grain-diameter unit). The
boundary between the flowing layer and the substrate at
rest can move, owing to erosion or accretion processes.
Bouchaud et al. proposed to describe the erosion or accre-
tion term depending linearly on the deviation (6 — 6yp)
from the static angle of repose 6gp. The destabilization
(or redeposition) efficiency is assumed further to be pro-
portional to the number of flowing particles, and the mass
conservation can hence simply be expressed as a dynami-
cal equation for the number of immobile grains h(x,?)
[whose derivative dh(x,t)/0x determines the local sub-
strate slope]: dh(x,1)/dt = —yR(x,1) (0 — Og.0p). Here
y is the collision rate [y =~ (g/d)"/?, where g is the
gravity constant and d is the grain diameter]. Next,
Bouchaud et al. approximate that the grain fall velocity
v is a constant throughout the whole flowing layer. They
obtain therefore, for the local dynamics of the rolling
grains, dR(x,1)/dt = yR(x,1) (6 — Osop) + VOR(x,1)/
dx + D3*R(x,t)/dx>. The first term on the right-hand
side corresponds to the erosion/accretion processes, the
second term describes the advective displacement of the
flowing grains, and the last, diffusive term corresponds
to the avalanche spreading. The magnitude of v is
given by the limiting velocity between two collisions:
7 =~ (gd)"/2. If one considers now the development of a
packet of rolling species located at x = 0 at time t = 0
in the case 6 > 0y.p, the packet is convected downhill
with a velocity 7, is amplified as exp[y(6 — Ogop)t],
and spreads as (4Dr)'/2 (the slope variation due to
erosion is neglected). Hence, the number of rolling
grains located at x = 0 varies in time as R(0,7) =
(4mDt)" 2 exp[y(0 — Ostop)t — (v?t/4D)]. Within this
approach, the convection-diffusion mechanism is thus
shown to shift the limiting slope which separates the
avalanche amplification from the damping regime. For
6 > Osop + v2/4Dy rolling grains are generated faster
than they are convected downwards, and this leads to an
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exponential increase of the avalanche mass. On the other
hand, for 6 < Ogp + v2/4D7y, avalanches shrink.

In this paper we investigate the nucleation and amplifi-
cation processes of avalanches, in a bidimensional model
system. We show that the growth rate of the avalanches is
determined by the difference of the velocities of the two
(uphill and downhill) propagating fronts. The two front
velocities are determined experimentally, and microscopic
mechanisms are then proposed, which simply account for
the observed dynamical properties.

The experimental setup has been described with further
details elsewhere (see Refs. [3,6,7]). It mainly consists
of a hollow aluminum cylinder (20-cm diameter) rotating
around its horizontal axis at a constant speed. The con-
tainer is partly filled with grains. Experiments are con-
ducted with a monodisperse collection of steel spheres
(ball bearings, of diameter d = 1.5 mm), with Young’s
modulus ¥ = 200 GPa and friction coefficient k =~ 0.1.
The elastic restitution coefficient of the particles is e =
0.93. The grains are confined between two vertical glass
faces, separated by one bead diameter. Thus the packing
is bidimensional, and the lateral glass walls allow a visu-
alization of the internal pile structure and an access to the
grain velocities, which are continuously recorded by means
of a fast camera (250 frames/second) and associated com-
puter image processing. The rotation speed of the drum is
monitored at 0.1 rpm. For this rotation velocity, the flow
displays a discrete regime of well separated avalanches,
distributed in size roughly according to a Gaussian statis-
tics [7]. Upper layers of particles intermittently flow on the
substrate which experiences a slow solid-body rotational
motion. The typical duration of one avalanche is 1 sec,
and the delay type between two consecutive avalanches is
of the order of 10 sec.

Figure 1 shows a series of snapshots showing the nucle-
ation and the propagation of a typical avalanche. Several
noticeable features can be pointed out. First, the most un-
stable particle (or block of particles) is first destabilized,
due to continuous solid rotation of its supporting basis be-
neath it. Second, we observe the propagation of a kine-
matic wave uphill, which corresponds to the onset into
motion of uphill adjacent particles leaning on the previ-
ously starting grains. At the same time, we observe that
adjacent neighboring particles lying downstream undergo
shocks from the downward granular jump, triggering their
motion. So, the jump is permanently refreshed and formed
of new grains just entering into motion. We will describe
this effect with further details below.

It is important to determine whether the upstream and
downstream propagating fronts experience an accelerated
regime, or rapidly attain their limiting velocities, and what
the phenomena are that drive these two velocities. Figure 2
shows the absolute value of the distance covered by these
two fronts as a function of time. The experimental points
have been averaged on 20 runs of avalanches growing up
to the limit imposed by the setup boundaries. We cannot
distinguish any accelerated transient regime within our ex-
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(a)

FIG. 1. Sequence of pictures showing the nucleation and the
propagation of an avalanche. Here flowing grains are tagged in
black and the delay time between each snapshot is 0.1 s. In
(a), the most unstable particle (or block of particles) is first
destabilized. In (b) and (c), we observe the propagation of a
kinematic wave upslope, which corresponds to the onset into
motion of uphill adjacent particles leaning on the previously
starting grains. Simultaneously, adjacent neighboring particles
lying downstream undergo shocks from the downward granular
jump, triggering their motion. The velocity of the downhill
propagating jump is twice (*10%) the depth-averaged velocity
of the flowing layer.

perimental accuracy: the two sets of experimental points
can be fitted to straight lines. We can also directly measure
the thickness of the flowing layer through the lateral wall.
We observe that the flowing layer quickly attains the steady
regime thickness, which is of the order of 7-10 grain sizes.
Since both upstream and downstream fronts propagate with
constant velocities, we realize that the avalanching mass
increases linearly in time in the two-dimensional geome-
try. In three dimensions, if the lateral velocity also attains
a steady state regime, we expect this relation to generalize
as mass o(time)?. From the direct access to the individual
grain dynamics, we can extract the average magnitude v’
of their velocity: we find 7 = 10 cm/s, which compares
well with /gd sinf = 9.2 cm/s. We remark, moreover,
that the magnitude of U coincides with that of the upward
propagating kinematic wave. We can explain this interest-
ing property by means of the following simple argument.
There is a source term for the number of falling particles,
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FIG. 2. Distances covered by the downwards and up-
wards propagating fronts as a function of time (averaged on
20 avalanche runs). In both cases, we are unable to detect
any transient regime: the limiting velocity is reached very
fast. The average velocity of the downhill propagating front
is approximately wv; =~ 20 cm/s, while that of the uphill
propagating front is v; = 10 cm/s. This last one compares
with the depth-averaged velocity v of the flowing layer.

which is related to the advance of the destabilizing front
upslope. The number of new destabilized particles (per
unit time) reads as dN /dt = vy, v1h', where vy, stands
for the areal density of grains in the frozen phase and A’
for the thickness of the front. On the other hand, the flow
rate of grains is dN /dt = vaynUh, where vgy, is the areal
density of the flowing phase and / is the thickness of the
avalanche, which identifies with that of the front (& = A').
Since there is no major difference of densities between the
immobile and flowing phases [(siat — Vdyn)/Vayn < 0.1],
vy = v ensues. Note that the BCRE model also leads to
the existence of kinematic waves. Equating the exponen-
tial term to unity in R(0,¢) gives the typical velocities of
the tails of the flowing bulge [8]. The velocity of the upper
front is thus given by

Dy

v = _7(0 - estart), (1)

(Ostare = Oseop T v2/4Dv) and can therefore propagate
upwards or downwards according to whether 8 > O
or 6 < Bgure. Within the BCRE model, the front velocity
is precisely zero when 6 = O [8], while our measure-
ment clearly shows that |v| = [7].

Another remarkable experimental feature that can be de-
duced from Fig. 2 is that the velocity of the downstream
propagating front is approximately twice that of the up-
stream propagating front. Here it is important to point out
that the properties of an avalanche falling on a noncohe-
sive bed composed of grains of the same nature drastically
depart from those occurring on a solid substrate that can-
not be eroded. The last situation was, for instance, studied
in experiments conducted in inclined channels, with rough
bottoms [9,10]. In the case studied here, the downward
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front propagates faster than the depth-averaged velocity of
the flowing layer. On the contrary, considerations on mass
conservation lead to precisely identify the front velocity
v with the average avalanche velocity ¥ in the case of
nonerosive substrates.

In order to get a microscopic insight into the mecha-
nism which governs the lower front velocity, we present in
Fig. 3 the distance covered by the lower front as a func-
tion of time for a typical avalanche run. We recognize a
steplike function, made up of inclined segments separated
by quasivertical discontinuities. The slope of the segments
is identical to the depth-averaged velocity v of the flowing
layer, whereas the jumps correspond to sudden advances
of the front downslope. Corresponding sets of pictures elu-
cidate this phenomenology. Sudden discontinuities corre-
spond to the destabilization of grain blocks as a whole, and
their magnitude corresponds to block sizes. On the other
hand, there is no destabilization of new grains downstream
during the plateau events. Concerning the upper front, a
detailed observation reveals that its upslope advance also
occurs via collective destabilization of grain blocks. But
there in contrast the front remains motionless between two
successive destabilization events.

An explanation of the relation v| = 2v can proceed
from the statement that, at a microscopic level, the ad-
vance of the fronts is characterized by the intermittent
destabilization of adjacent blocks downstream. For the
sake of simplicity, consider first that the initial piling at
rest displays a sinusoidal modulation of the free surface,
with wavelength A (Fig. 4). During the advance of the
front over a depleted region downslope, no new grains are
destabilized, and the velocity of the front coincides with
the depth-averaged velocity v of the flowing layer. In con-
trast, when the front meets and collides with a bump at
rest, this last one is (quasi)instantaneously destabilized as
a whole, so that the front advances suddenly over a dis-
tance A/2. Those intermittent events occur with frequency
1/7 = 2v/A. Hence we can write for the time averaged
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FIG. 3. A small-scale look at the advance of the downhill

propagating front as a function of time (for one avalanche run).
The quasivertical discontinuities correspond to sudden destabi-
lization of blocks of particles adjacent to the downwards propa-
gating front. The slope between two destabilization events
corresponds to the depth-averaged avalanche velocity .
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(a)

FIG. 4. Schematic model describing the downward front ad-
vance. Bumps are successively destabilized, owing to the shocks
caused by the downslope propagating jump. This corresponds
to sudden and discontinuous advances of the front. Between
two destabilization events, the front advances with the average
avalanche velocity 7 over a distance which compares with the
average bump size A/2. The delay time between two destabiliza-
tion events reads hence 7 = A/2v. This schematic description
allows one to explain the relation v| = 2v.

velocity of the downslope front
Al
=v+ —-——=2v. 2
v =7 >, v 2)

It is worth noting that relation (2) does not depend on the
hypothesized initial wavelength A and actually holds what-
ever the roughness of the free surface. It simply proceeds
from the statement that the average distance separating two
successive block destabilizations is identical with the mean
block size. We also addressed the effect of the grain micro-
mechanical properties (dry friction and elastic restitution
coefficients) by performing measurements of v| and v;
with more frictional, less elastic grains (Fontainebleau
sand). In the case of more dissipative materials one might
have expected a decrease of the down front destabiliza-
tion efficiency and consequently a decrease of the ratio
R = v /vy. Surprisingly, the relation R = 2 seems to per-
sist in the case of real sand. Moreover, the ratio R seems
also not to depend on the setup dimensionality. Revis-
iting the snapshot reported in Fig. 4 of Ref. [11] shows
that R = 2 is also obtained for glass beads in a 3D ge-
ometry. Nevertheless, we notice here some differences
with the experiment performed by Daerr et al. [11]. These
authors observed the upper boundary of the avalanche
propagating downwards over a certain range of surface in-
clinations. But they also found an upwards propagating

014301-4

front for larger angles. We suggest that this difference
originates in dissimilar experimental procedures. Daerr
et al. chose to trigger the onset of avalanches by exter-
nally perturbing the free surface with a probe, thus pro-
viding the dilatancy required to start the grain moving by
hand. In contrast, using here a rotating drum we observe
avalanches whose nucleation occurs spontaneously, due to
the progressive increase of the slope.

To conclude, we showed that the two-dimensional
avalanching masses are mainly characterized by the
velocities of the two up and down fronts, since the
thickness rapidly reaches its steady value. We carried out
experimental determinations of these two velocities, and
found that the magnitude of the velocity of the upstream
propagating front can be identified with the average
velocity of the flowing grains, whereas the velocity of
the downslope propagating front corresponds to twice the
depth-averaged avalanche velocity. This feature does not
seem to depend noticeably on the dissipative properties
of the flowing material nor on the space dimensionality.
On the other hand, we presented evidence that the front
dynamics is mainly ruled by the erosive properties of
the substrate. We also found that the 2D avalanche mass
varied linearly in time, and we suggest a generalization
as mass (time)? in 3D geometry. Finally we proposed
a simple explanatory scheme qualitatively accounting for
our experimental findings.

We acknowledge A. Daerr for interesting discussions
and E. Bringuier for a critical reading of the manuscript.
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