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We propose a hierarchically structured communication system by using sequentially synchronized
chaotic systems. Sequential synchronization is attained by first feeding a noiselike signal to a variable of
the first transmitter and its receiver simultaneously and then feeding a variable of the first transmitter and
its receiver to a variable of the second transmitter and its receiver, respectively, for subsequent feedings of
variables in sequence. When this is applied to communication, the hierarchical structure enables selective
protection of information due to the sequential property. We illustrate this in sequentially synchronized
Navier-Stokes and Lorenz equations.
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Recently secure communication using chaos synchro-
nization has attracted much attention as one of the impor-
tant practical applications of chaos. The main idea is that
when an information signal is masked by a large amplitude
of chaotic signal, it can be easily recovered at the receiver
by means of chaos synchronization, while external attack
is almost impossible during transmission. Since the first
report on chaos synchronization by Pecora and Carroll [1],
and the following circuit implementation for communica-
tion by Cuomo and Oppenheim [2], many communication
methods using chaos synchronization have been developed
[3,4] and demonstrated in electronic circuits [2,5] and op-
tical systems [6]. As for the efficiency of communication
using chaos, there also have been many considerations in
a technical respect [7].

In communication, it sometimes happens that one needs
a system which allows privileged users to access informa-
tion of a higher level of importance, while general users
can access information of modest importance. By using a
transmission system with a hierarchical structure, one can
hope to protect the security of communication selectively,
while not hampering the general users’ access. The mo-
tivation of our study is to address this question of how
to make a hierarchically structured communication system
using chaos synchronization. As the answer, in this Let-
ter we propose a sequential synchronization scheme that
is applicable to a hierarchically structured communication
system.

The main procedure of the sequential synchronization
method is that we first feed a common, arbitrary noiselike
signal to a variable of the first transmitter and its receiver
chaotic system simultaneously. Next, we feed a variable
of the first transmitter and its receiver to a variable of the
second transmitter and its receiver, respectively. And then,
we feed a variable of the second transmitter and its re-
ceiver to a variable of the third transmitter and its receiver,
and so forth. When this synchronization scheme is ap-
plied, the communication system can have a hierarchical
structure because of the sequential property. So a lower
level user who has only the first chaotic system may ac-
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cess an information signal masked by the dynamics of the
first chaotic system but cannot access an information signal
masked by the signal of the second chaotic system. Addi-
tionally, the attractor of each chaotic signal is so strongly
modified as to make the system unidentifiable even by the
predictive modeling and noise reduction methods [8]. We
explain the method of sequential synchronization and its
application to communication with emphasis on the attain-
ment of a hierarchical structure. We illustrate the prof-
itable characteristics of the communication in sequentially
synchronized five-dimensional Navier-Stokes and three-
dimensional Lorenz equations.

The sequential synchronization scheme is as follows:

�x � F1�x1, x2, . . . , �a1xi 1 b1f�t��, . . .� ,

�y � F2� y1, y2, . . . , �a2yj 1 b2xl�, . . .� ,

�z � F3�z1, z2, . . . , �a3zk 1 b3ym�, . . .� ,

· · · �transmitter chaotic systems� ,

�x0 � F1�x0
1, x0

2, . . . , �a1x0
i 1 b1f�t��, . . .� ,

�y 0 � F2� y0
1, y0

2, . . . , �a2y0
j 1 b2x0

l�, . . .� ,

�z0 � F3�z01, z02, . . . , �a3z0k 1 b3y0
m�, . . .� ,

· · · �receiver chaotic systems� ,

(1)

where ai and bi are the scaling values for coupling. In the
first pair of chaotic systems, the arbitrary common f�t� is
fed to xi and x0

i simultaneously. In the second pair, the
signals xl and x0

l are fed to yj and y0
j , respectively. If the

first pair is synchronized by f�t�, xl � x0
l, then the second

pair can be synchronized by xl and x0
l. The succeeding

pairs of chaotic systems are synchronized in the same way.
Sequential synchronization is a modification of the type

of chaos synchronization attained by feeding an external
common noise [9,10]. So, to explain its way of working,
we consider two logistic maps driven by the random noise
bjn and bj0

n, respectively, whose equations are

xn11 � lxn�1 2 xn� 1 bjn ,

x0
n11 � lx0

n�1 2 x0
n� 1 bj0

n .
(2)
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Through linear transformations, xn � ayn 1 bjn21 and
l�a � L, we obtain the following equations:

yn11 � L�ayn 1 bjn21� �1 2 �ayn 1 bjn21�� ,

y0
n11 � L�ay0

n 1 bj0
n21� �1 2 �ay0

n 1 bj0
n21�� .

(3)

Then jn21 and j
0
n21 are fed to yn and y0

n, respectively,
with the scaling factors a and b, the same as in Eq. (1).

If we assume that jn21 and j
0
n21 are synchronized sig-

nals of the first chaotic systems and that Eq. (3) represents
the second chaotic systems, we can obtain the synchro-
nization error of Eq. (3) such that zn11 � unzn 1 Az2

n by
letting jn21 � j

0
n21, where zn � yn 2 y0

n, un � La�1 2

2bjn 2 2axn21�, and A � la2. The dynamics of zn

corresponds to the transverse motion from the synchro-
nization manifold [11]. The above equation can be written
as zn11 � exp�n�lnun��z1, where �lnun� �

R
ln�u�P�u� du

and P�u� is the normalized probability distribution of un.
Since �lnun� is the transverse Lypunov exponent, zn can
converge to 0 when �lnun� is negative [10–12]. That
is, the two logistic maps are weakly synchronized [13].
So we can easily calculate the condition of a and b
for synchronization [4,10,11]. Figure 1 is the temporal
behaviors of yn 2 y0

n for L � 3.8. When a � 0.8 and
b � 0.2, yn 2 y0

n ! 0, as shown in Fig. 1(a). However,
when a � 0.85 and b � 0.15, intermittent desynchro-
nization appears as shown in Fig. 1(b) [12]. From this,
we can understand that there exists a synchronization re-
gion [4,10,14].

The characteristics of sequential synchronization are
studied in the following two pairs of chaotic systems:

�xi � 21.9xi 1 4�a1yi 1 b1f�t��zi 1 4uiyi ,

�yi � 27.2�a1yi 1 b1f�t�� 1 3.2xizi ,

�zi � 24.7zi 2 7.0xi�a1yi 1 b1f�t�� 1 k ,

�ui � 25.3ui 2 xiyi ,

�yi � 2yi 2 3.0xiui �Navier-Stokes� ,

�pi � s��a2qi 1 b2zi� 2 pi� ,

�qi � cpi 2 �a2qi 1 b2zi� 2 piri ,

(4)

�ri � pi�a2qi 1 b2zi� 2 bri �Lorenz� , (5)

where the subscript i is the transmitter or the receiver
system when i � 1 or i � 2, respectively; k, s, c, and b
are the parameters which are taken to be 31.5, 10.0, 28.0,
and 8�3, respectively; and ai and bi are the scaling
factors for coupling. The first pair is the five-dimensional
Navier-Stokes equations where f�t� is fed to y1 and y2

simultaneously, and the second is the Lorenz systems
where z1�t� and z2�t� are fed to q1 and q2, respectively.
In the calculation, we let f�t� � A sin�2pnt� and change
the amplitude and frequency at each period of f�t� by
using A � 50j and n � 0.8� 1

2 1 j0�. Here j and j0 are
pseudorandom numbers in the range j and j0 [ �0, 1�.
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FIG. 1. Temporal behaviors of the difference motion of the
two logistic maps when they are (a) synchronized at a � 0.8
and b � 0.2, and (b) intermittently synchronized at a � 0.85
and b � 0.15.

The traces in Figs. 2(a)–2(f) show the temporal behav-
iors of f�t�, x1�t�, x1�t� 2 x2�t�, z1�t�, r1�t�, and r1�t� 2

r2�t�, respectively, when a1 � 1.2, b1 � 0.9, a2 � 0.9,
and b2 � 22.5. As shown in Figs. 2(c) and 2(f), x1 2 x2

and r1 2 r2 converge to zero rapidly as time evolves. This
means that the Navier-Stokes equations are synchronized
by f�t�, whereas the Lorenz equations are synchronized by
z1�t� and z2�t�. Here, the range of a1 and b1 for synchro-
nization of the Navier-Stokes equations depends upon A
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FIG. 2. Temporal behaviors of the control signals, the trans-
mitting signals, and the difference motion of the variables when
synchronization occurs: (a) f�t�, (b) x1�t�, (c) x1�t� 2 x2�t�,
(d) z1�t�, (e) r1�t�, and (f ) r1�t� 2 r2�t�.
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and n of f�t�. On the other hand, the range of a2 and b2

for synchronization of the Lorenz equations depends upon
f�t�, a1, and b1. For another example of sequential syn-
chronization, we tested up to ten pairs of different chaotic
systems, such as Rössler ! Lorenz ! Navier-Stokes !

Duffing ! forced Brusselator ! Van der Pol ! Lorenz !
Navier-Stokes ! Rössler ! Duffing equations, and, as a
result, found that the time required for synchronizing each
pair depends on that of the prior chaotic system as well as
on the scaling factors for coupling.

What interests us in Fig. 2 is the temporal behaviors
of x1�t� and r1�t�, which are strongly modified by f�t�
and z1�t�. Insofar as we transmit only f�t�, x1�t�, and
r1�t� in communication, we can construct the attractors in
such phase spaces as f�t� versus x1�t�, f�t� versus r1�t�,
x1�t� versus x1�t 1 t�, and r1�t� versus r1�t 1 t�, where
t � 0.125, as shown in Figs. 3(a), 3(b), 3(c), and 3(d),
respectively. Especially, the attractors of the Navier-Stokes
[Fig. 3(c)] and the Lorenz equations [Fig. 3(d)] in time-
delayed coordinates do not leave any traces of their own
original structures. So we can understand that it is hard
to reconstruct the original attractors of the chaotic systems
and to estimate the number of parameters even in a low-
dimensional system because of the strong modification.

We obtained the correlations of the transmitting signals
in order to show the deformation of the transmitting
signals quantitatively. Figures 4(a), 4(b), and 4(c) are the
autocorrelations of f�t�, x1�t�, and r1�t�, respectively.
Figures 4(d), 4(e), and 4(f) are the cross correlations of
f�t� versus x1�t�, f�t� versus r1�t�, and x1�t� versus r1�t�,
respectively. The autocorrelation of f�t�, of which the
correlation time is about 1 sec, is given as an example of
a noiselike signal that is made by a d-correlated random
number. When we compare the autocorrelations of x1�t�
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FIG. 3. Phase diagrams of the transmitting signals for 50.0 ,
t , 100.0 when the transmitter and its receiver system are syn-
chronized sequentially. (a) f�t� versus x1�t�, (b) f�t� versus
r1�t�, (c) x1�t� versus x1�t 1 t�, and (d) r1�t� versus r1�t 1 t�,
where t � 0.125.
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and r1�t� with the correlation function in Fig. 4(a), they
have a short correlation time of about 1 sec and do not
exhibit any periodic structure in their lag dependence.
From this result, we understand that x1�t� and r1�t� act
as noiselike signals. The cross correlations in Figs. 4(d),
4(e), and 4(f) also show a short correlation time which
indicates that the signals are uncorrelated with each other.

Owing to the deformation and short correlation time of
the transmitting signals, the communication system using
this method has a number of merits with respect to security
[8]. (i) The temporal behaviors of the transmitting signals
are so strongly modified and uncorrelated. (ii) The second
chaotic systems of the Lorenz equations are synchronized
without transmitting z1�t� or z2�t� of the first chaotic sys-
tems. (iii) We can transmit an arbitrary real noise signal
instead of f�t�. In this case we can recover the same f�t�
at the transmitter and the receiver system, by using identi-
cal bandpass filters.

The schematic diagram of the communication using se-
quential synchronization is shown in Fig. 5. In this sys-
tem, an information signal can be masked by y or y and
transmitted to the receiver through channels n1 or n2, re-
spectively. The most significant characteristic of this com-
munication system is the hierarchical structure that to our
knowledge has never been suggested in any other secure
communication system. To emphasize, in our commu-
nication system, while an information signal transmitted
through an n1 channel can be accessed by the general user
who has the chaotic system A, another signal transmitted
through an n2 channel can be accessed only by a special
user who has two chaotic systems, A and B, in simulta-
neous operation. Similarly, by transmitting a top secret
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FIG. 4. Correlations of the transmitting signals: autocorrela-
tions of (a) f�t�, (b) x1�t�, and (c) r1�t�, and cross correlation
of (d) f�t� versus x1�t�, (e) f�t� versus r1�t�, and (f) x1�t� ver-
sus r1�t�.
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FIG. 5. Schematic diagram of secure communication using se-
quential synchronization: mi are the information signals, ni are
the transmitting signals, s are the sending terminals, and r are
the receiving terminals.

information signal through the last channel, we can make
certain that only the most privileged group of users can ac-
cess it. So, according to the level of secrecy required, we
can control the degree of security.

In conclusion, we have proposed a sequential synchro-
nization method applicable to communication. As a result
the communication system enables selective protection of
information for its hierarchical structure and deforms the
transmitting signals so seriously as to make the system
unidentifiable.
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