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Learning Phase Synchronization from Nonsynchronized Chaotic Regimes
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We present a novel modeling approach for reconstruction of the global behavior of coupled chaotic
systems from bivariate time series. We analyze two coupled chaotic oscillators, which are able to phase
synchronize due to coupling. It is shown that our technique enables the recovery of the synchronization
diagram from only three data sets. In particular, this allows the estimate of the relative strength of the
coupling and the parameter mismatch of both subsystems. The method is most efficient if only data from
the nonsynchronized regime are used for the model learning. We also apply this approach to experimental
data of a paced plasma tube.
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The study of synchronization has a long history going
back to Christiaan Huygens who observed synchroniza-
tion of two pendulum clocks in 1673. This finding for
periodic oscillators has been recently extended to chaotic
systems, and four basic types of synchronization have
been found: complete [1], generalized [2], phase [3], and
lag synchronization [4]. Phase synchronization of coupled
or periodically driven complex systems has found sev-
eral applications (cf. Ref. [5], and references therein),
including laboratory experiments, such as circuits [6],
lasers [7], and plasmas [8], as well as natural systems,
such as cardiorespiratory interaction [9,10], brain activity
of Parkinsonian patients [11], paddlefish electrosensitive
cells [12], Canadian lynx-hare populations [13], and solar
activity [14].

To analyze such experimental data, some special tech-
niques of synchronization analysis have been proposed and
it has been shown that they are very efficient even for
noisy and nonstationary data [5,9,11,15]. However, the
important problem, how to reconstruct models from such
synchronized data, remains open. It is of special interest
to estimate the parameters that characterize the underly-
ing coupled system such as the coupling strength of in-
teraction between the two subsystems and the parameter
mismatch of the two oscillators. These system parameters
often cannot be measured, in particular in natural systems.
To retrieve the synchronization regime of the underlying
system, the reconstruction of a parametrized model family
from sets of recording data is required.

There are several approaches to recover such a family
from time series [16,17]. By using radial basis functions,
the bifurcation diagram of a discrete-time dynamical sys-
tem has been successfully reconstructed, however, under
the restriction that the values of the bifurcation parame-
ters that underlie each of the given time series are known
a priori [18]. Also, a nonlinear regression technique based
on maximal correlation enables one, in a nonparamet-
ric way, to retrieve the time delay in experimental laser
data [19].
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In the following, we focus on a special technique that en-
ables us to estimate the underlying bifurcation parameters
of dynamical systems [20]. By using nonlinear predictors,
the algorithm reconstructs a bifurcation parameter family
from a few sets of time series associated with different
parameter values. This approach has the important practi-
cal advantage that no prior knowledge of the parametrized
family of the dynamics, in particular the underlying bifur-
cation parameter values, is necessary. The efficiency of
this technique has been shown for prototypical model sys-
tems of chaos, such as the Hénon, the Rössler, and the
coupled delayed-logistic systems [20] and for nonstation-
ary data [21].

Our purpose is to demonstrate this modeling approach
applied to coupled or driven chaotic oscillators, using bi-
variate time series. The global behavior of the underly-
ing system is learned from the observation of very few
recorded data sets (no more than four), obtained from
measurements made with different parameter values of the
system.

We begin by describing our modeling technique. Sup-
pose we have two coupled oscillators whose dynamical
states are simultaneously recorded into bivariate time se-
ries �j1�t�, j2�t��. Among several dynamical components,
only a single variable j1,2�t� is observed from each oscilla-
tor. With a change in the bifurcation parameters p, mainly
the coupling strength and the parameter mismatch of both
subsystems, the coupled system exhibits a variety of dy-
namical patterns, e.g., phase synchronization, nonphase
synchronization, borderline between both, etc. We want to
estimate the unknown parameter values �pi�i�1,...,N asso-
ciated with N sets of given bivariate time series �j1�t, pi�,
j2�t, pi��i�1,...,N under the conditions that (A) the time
series are obtained from nonphase synchronized chaotic
regimes and (B) all data come from the same attractor
whose qualitative structure is changed by the bifurcation
parameters.

The main idea of our approach is to compute G which
are qualitatively similar to the original parameters p. For
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a one-to-one correspondence between G and p, G gives
rise to a parametrized family of nonlinear dynamics F�G, ?�
which exhibits qualitatively similar bifurcation phenomena
inherent to the original system.

Our algorithm is mainly composed of two steps (the
detailed algorithm will be described in full in a future
paper).

(i) Embed the bivariate time series �j1�t�, j2�t�� into de-
lay coordinates [22]: X1 � �j1�t�, j1�t 2 t�, . . . , j1���t 2

�d 2 1�t����, X2 � �j2�t�, j2�t 2 t�, . . . , j2���t 2 �d 2

1�t����. Construct, within the same parametrized family,
two coupled nonlinear predictors F1,2 that model the N
sets of time series as

dX1

dt
� F1�W , X1, X2� ,

dX2

dt
� F2�W , X2, X1� .

(1)

This means that we seek the N sets of nonlinear prediction
parameters �W�pi��i�1,...,N that correspond to each time se-
ries �j1�t, pi �, j2�t, pi��i�1,...,N (learning algorithm of the
nonlinear predictors is described in detail in Ref. [20]).
Note that the dimension of the prediction parameters W is
larger than that of the original parameters p. For the non-
linear predictors F1,2, any global functional model, such
as polynomial functions [17] or radial basis functions [18],
may be used. In this paper, we exploit a three-layer feed-
forward neural network [23] having 2d units in the input
layer and d units in the output layer for each F1,2.

(ii) Use the singular value decomposition to extract the
principal components G from the nonlinear prediction pa-
rameters �W�pi��i�1,...,N . The number of the principal
components G is determined in such a way that the sum
of the normalized eigenvalues that measure significances
of the principal components is larger than 0.95. On this
principal component parameter space G, we define a pa-
rametrized family of coupled nonlinear predictors F1,2. By
computing the mean frequency difference of the nonlinear
predictors F1,2, which depends upon the principal compo-
nent parameter values G, the synchronization diagram, i.e.,
the region of phase synchronization and its borderline, is
recovered.

The present algorithm is based on the following mecha-
nism. Suppose that a coupled nonlinear system f1,2�p�
whose bifurcation parameters are fixed as p � p� is mod-
eled by F1,2�W��. When the original parameters p� are
slightly perturbed as p� 1 Dp, we can expect from the
smoothness of nonlinear dynamics that the corresponding
model is given by F1,2�W� 1 DW�, which is also a slight
perturbation of the model parameters W�. In this way, in
parameter space around p� and W�, there may exist a one-
to-one correspondence between the original and the model
parameters. The original parameter space p which is pro-
jected into the model parameter space W is extracted via
the singular value decomposition.

Next we apply this technique to two bidirectionally
coupled Rössler oscillators [3], �x1,2 � 2v1,2y1,2 2 z1,2 1
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z1,2�x1,2 2 10�. We analyze the case where the subsystems
are not identical, but have a mismatch Dv in the parame-
ters v1,2 � 1 6 Dv. A systematic dependence of the
synchronization region on the coupling strength C and
the parameter mismatch Dv is shown in Fig. 1. To learn
the global behavior of this coupled system with depen-
dence on both parameters, we simulate data records for
only three different parameter arrangements. For three sets
of different parameter values, �C, Dv� � �0.06, 0.045�,
�0.05, 0.04�, �0.06, 0.035� (Fig. 1), the corresponding bi-
variate time series �j1�t�, j2�t��i�1,2,3 are recorded for a
time interval of 100 with a sampling rate of 0.05. For the
time series variables j1,2, we pick the y1,2 coordinate from
each oscillator.

At the first step of the algorithm, the time lag and the
embedding dimension are set as �t, d� � �0.2, 3�. Next,
we model each of the three records using the coupled non-
linear predictors [Eqs. (1)]. By singular value decompo-
sition, two-dimensional principal component parameters
�G1,G2� are extracted from the three sets of 160 nonlinear
prediction parameters corresponding to the three records.
We then perform a linear rescaling of this space, in order to
bring these parameters into close correspondence with the
system’s parameters C and Dv. Without any knowledge
of the dynamical system, it is, in principle, impossible to
find correspondence between the system’s parameters and
the principal components. Nevertheless, since we are inter-
ested in a particular parameter, i.e., the coupling strength
parameter, its corresponding parameter can be identified.
We rewrite the principal components in polar coordinates
�G1,G2� � �r cosu, r sinu� and determine the optimal
angle uopt that corresponds to coupling strength C. The
main point of this optimization is to find the u value that
has the strongest influence on the coupling parameters
�Wk : k [ coupling� of the nonlinear predictors F1,2. This
subset of the prediction parameters includes all those
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FIG. 1. Borderlines between regimes of phase synchronization
and nonsynchronization for the two coupled Rössler oscillators
(solid line) and the coupled nonlinear predictors (dotted line).
The triangle indicates the locations of the three sets of parameter
values used for the learning of the neural networks.
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which couple X1 and X2 in Eqs. (1). Their influence is
measured by the mean variance dW�u� of the coupling
parameters for a variation of radii �r � i�40: i � 240,
239, . . . , 40�. The mean variance dW is then normalized
by using 500 sets of the mean variances computed for
randomly selected parameters of the nonlinear predictors.
From this bootstrapping technique, we calculate Theiler
et al.’s [24] significance value S�u� and get a maximum
for uopt � 0.251, which gives S � 5.34, a good level of
significance. The significance test, therefore, infers corre-
spondence between the original parameters and the prin-
cipal components as C $ G1 cosuopt 2 G2 sinuopt and
Dv $ G1 sinuopt 2 G2 cosuopt. The synchronization dia-
gram of the coupled nonlinear model [Eqs. (1)] is finally
drawn on this corresponding principal component space.
The model diagram of Fig. 1 shows a surprising similarity
to the original one.

It is important to note that the most efficient way to
reconstruct the synchronization diagram is to use only
the data from nonphase synchronization regimes as in the
above experiment. In the phase synchronization regimes,
there exists a low-dimensional nonlinear manifold in which
the phase synchronization dynamics is constrained. If we
use only the data from the phase synchronization regimes,
prediction of the nonsynchronized dynamics seems to be
very hard because such data do not contain any dynami-
cal information from outside of the phase synchronization
manifold.

As the second example, a periodically forced Rössler
system, �x � 2y 2 z 1 E cosVt, �y � x 1 0.15y, �z �
0.4 1 z�x 2 8.5�, is analyzed [25]. For the modeling
of this driven system, an input-output model d

dt X1 �
F1�W , X1, X2� is used instead of the coupled model
[Eqs. (1)]. By assuming that the driving force signal is
recorded as the second component of the bivariate time
series as j2�t� � cosVt, we model only the forced system
F1 which has X2 � �cosVt, cos�Vt 2 t�, . . . , cos���Vt 2

�d 2 1�t���� as the input signals. Because of this simpler
task, we take only two different parameter values for
input intensity as E � 0, 0.5 and obtain the corresponding
bivariate time series � y�t�, cosVt� for a time interval of
20p with a sampling rate of p�64. The driving frequency
is fixed as V � 1.04. We model the two records using
the input-output model with �t, d� � �0.2, 3� and extract a
single principal component parameter G1 by singular value
decomposition of 80 model parameters. With dependence
on the driving frequency V and the principal component
parameter G1, which is scaled to match the corresponding
intensity parameter E of the original system, the borderline
between the synchronized and nonsynchronized regimes
of the input-output model is again in good agreement with
the original (Fig. 2).

We now test whether our technique also works for ex-
perimental data. We analyze experimental data from a
chaotic plasma discharge tube subject to the action of a
periodic wave generator, a paradigmatic experiment for
chaos phase synchronization [8]. This tube (Geissler tube)
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FIG. 2. Borderlines between regimes of phase synchronization
and nonsynchronization for the forced Rössler system (solid
line) and the input-output model (dotted line). The two crosses
indicate the locations of the two sets of parameter values used
for the learning of the neural networks.

is filled with spectroscopically pure helium gas, and the
anode and cathode are connected to a high dc voltage
(850 V) through a current limiting resistor R � 30 kV. In
parallel with the resistor, a capacitor C � 3.5 pF cuts out
the high voltage, and a transformer adds a very low ampli-
tude sine wave (range 0 0.4 V) pacing the whole system.

Because this is similar to the periodically forced Rössler
system, we again try to learn the global behavior from data
with only two different pacing parameters. As an experi-
mental measurement j�t�, the current through the plasma
is used, where one record is non-paced and the other is
paced with a pacing frequency of 6960 Hz and an ampli-
tude of 0.4 V. The paced data is in a phase synchronized
regime and the sampling rate is set as 200 kHz. Similarly
to our analysis of the driven Rössler model above, a syn-
chronization diagram of the plasma system is reconstructed
by using two sets of bivariate time series �j�t�,cosVt�
with V � 2p � 6960. We model the two records using
the input-output model with �t, d� � �7�200000, 3� and
extracted a single principal component parameter G1 by
singular value decomposition of 100 model parameters. By
changing the pacing frequency V and the principal compo-
nent parameter G1, which is scaled to match the real pacing
amplitude, the borderline between the regimes of phase
synchronization and nonphase synchronization is drawn
with the dotted line in Fig. 3. This is an Arnold tongue-
like shape similar to the original borderline (solid line of
Fig. 3) obtained directly from experimental data [8]. In
this case locations of the two borderlines do not show
the same level of agreement as before because (a) experi-
mental results are subject to all sorts of distortion and noise
and (b) one set of data used is from a synchronization
regime.

To conclude, the modeling approach presented in this
Letter enables us to reconstruct the synchronization dia-
gram of coupled or forced chaotic oscillators from a few
records of bivariate time series. Our technique allows us
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FIG. 3. Borderlines between regimes of phase synchronization
and nonsynchronization for a paced chaotic plasma discharge
(solid line) and the input-output model (dotted line). The plasma
data is recorded from the real experiment of Ref. [8].

to estimate the relative strength of coupling and to evaluate
how close a system is to the borderline of phase syn-
chronization and nonphase synchronization in experimen-
tal systems, even when no further information about the
underlying dynamics is available. This should be of im-
portance especially for natural coupled system [5], e.g., in
neural systems, parasystole, circadian rhythms, insulin dy-
namics, vocal fold vibrations, locomotion, and ventilation
versus respiration.

Practical application of the present technique might be
limited in case (a) recording data are contaminated with
strong observational or dynamical noise or (b) the dy-
namical system has strong nonlinearity or discontinuity.
Our future studies will deal with these problems and will
also apply the present technique to coupled stochastic non-
linear systems and a network of many coupled oscillators.
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