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New Determination of the Electron’s Mass
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A new independent value for the electron’s mass in units of the atomic mass unit is presented, me �
0.000 548 579 909 2�4� u. The value is obtained from our recent measurement of the g factor of the
electron in 12C51 in combination with the most recent quantum electrodynamical (QED) predictions. In
the QED corrections, terms of order a2 were included by a perturbation expansion in Za. Our total
precision is three times better than that of the accepted value for the electron’s mass.
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The mass of the electron is a fundamental physical con-
stant, currently known to a relative precision of 2.1 3

1029 [1,2]. It is also connected to other fundamental con-
stants, in particular to those which describe the properties
of atoms. To the Rydberg constant R` it is related via

R` � a2 mec
2h

, (1)

where the fine-structure constant a and the Planck constant
h also enter the expression. Those are currently known
to precisions of 3.7 3 1029 and 3.9 3 1028, respectively
[1]. The numerical value of c is fixed by definition, and
the Rydberg constant is known to an accuracy of at least
0.008 ppb [1,3,4] and thought to become even more pre-
cise in the near future [5]. Therefore a precise value of
the electron’s mass also allows us to obtain more precise
values for the other constants present in Eq. (1).

Recent measurements of the atomic mass of the electron
were carried out determining either the proton-electron
mass ratio mp�me [6–11], the antiproton-electron mass
ratio [10], or me�m�12C61� [2,12]. Most of these experi-
ments employed suitable Penning-trap techniques, where
electrons and ions were loaded alternately into the same
trap. By determining the cyclotron frequency

vc �
q

m
B (2)

(m is the mass and q the charge) for each type of par-
ticle and assuming the same magnetic field strength B,
the desired mass ratio was obtained. Farnham et al. [2]
carried out the most precise of these measurements by
subsequently observing a single 12C61 ion and clouds of
5–13 electrons. They obtained

me � 0.000 548 579 911 1�12� u . (3)

The recent compilation of the recommended values of fun-
damental physical constants [1] is mainly based on this
value.
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An indirect measurement was performed by Wineland
et al. [13] who measured the ground-state g factor for
9Be1 in a Penning trap by a laser-fluorescence technique.
Comparing their experimental result with the value then
predicted by theory [14], it was possible to derive the mass
ratio m�9Be1��me and thus also mp�me to a precision of
3.4 3 1027.

We have successfully developed and tested a setup for
investigating g factors of highly charged ions [15,16]. Mi-
crowave irradiation induces spin-flip transitions within the
system. For zero nuclear spin, the transition frequency is
equal to the electronic Larmor precession frequency vL,
given by

vL � g
e

2me
B , (4)

where e is the positive elementary charge unit. Calibrating
the magnetic field by the cyclotron frequency vc [Eq. (2)]
of an ion, the mass of the electron is obtained as

me �
g
2

e
q

vc

vL
mion , (5)

where mion denotes the mass of the ion. At any level of
precision under investigation here, the charge ratio e�q
can be considered as a ratio of integers. Thus only the g
factor and the frequency ratio vL�vc have to be known
to determine the electron’s mass in units of the ion mass.
For hydrogenlike systems, the g factor can be accurately
calculated ([17–20], for low-Z systems also [21–23],
and references therein). The frequency ratio vL�vc for
12C51 was recently measured by us [15]. We will discuss
our experiment first and outline the theoretical consider-
ations afterwards.

A single 12C51 ion is stored in the magnetic field (3.8 T)
of a cryogenic Penning trap (Fig. 1) which is described in
detail in [24,25]. The trapping potentials are generated
by a stack of 13 cylindrical electrodes of 0.7 cm inner
diameter. Two potential minima can be created along the
axis, which are separated by about 2 cm. Single highly
© 2001 The American Physical Society 011603-1
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FIG. 1. Sketch of the double Penning trap.

charged ions have been stored for months, and neither
vacuum �p , 10216 mbar� nor transport between the two
traps restrict the storage time of an ion. To determine
the Larmor frequency, the spin-flip rate is recorded as a
function of the frequency vmw of an applied microwave
field and of the cyclotron frequency vc of the ion [15,25].

To investigate spin flips, we first analyze the direction
of the spin in the so-called analysis trap, where the mag-
netic field has a considerable quadratic component, B �
B0 1 B2z2 1 . . . , B2 � 10 mT�mm2 [16]. Because of
this inhomogeneity, the axial frequency of the ion slightly
differs for both spin orientations. The ion is transferred to
the precision trap, where the magnetic field is much more
homogeneous �B2 � 8 mT�mm2�. Microwave irradiation
takes place, and simultaneously the cyclotron frequency is
measured by an image-current technique. To determine the
final spin state, the ion is moved back to the analysis trap.
This double-trap technique circumvents the limitations im-
posed by the magnetic inhomogeneity which is required for
the detection of the spin direction [26] and which limited
us to a precision of 1026 in an earlier experiment [16].

Employing a Gaussian least-squares fit to the spin-flip
resonance in Fig. 2, the center of the curve can be deter-
mined within 5% of the relative line width of 7 3 1029.
We modeled the small asymmetry of the resonance ac-
cording to Brown [27] and investigated it experimentally
by increasing the axial energy. Its influence on the ratio
vL�vc was found to be less than 2 3 10210. Corrections
are performed for finite ion-oscillation amplitudes by ex-
trapolating to vanishing energies. Finally, the frequency
ratio vL�vc can be extracted to a relative precision of
5 3 10210:

vL

vc�12C51�
� 4 376.210 498 9�19� �13� . (6)
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FIG. 2. Normalized Larmor resonance for 12C51 measured in
the precision trap. We plot the spin-flip probability versus the
frequency ratio vmw�vc , corrected for finite cyclotron energy.
The solid line is a fit of a Gaussian. The error margins are
calculated by assuming a binomial distribution of the spin-flip
probability.

Here, the first uncertainty is statistical [15], whereas
the second one is obtained from the estimation of
possible systematical shifts [15,25]. Employing the
published value for the electron’s mass [1], we obtain
g�12C51� � 2.001 041 596 3�10� �44�, where the first error
results from quadratically combining the uncertainties
of (6) and the second error is due to the uncertainty in
the known value of the electron’s mass. We report all
our uncertainties as one-sigma margins, i.e., standard
deviations.

The theoretical value of g�12C51� is given by the
Dirac value for the g factor in the ground state of
a hydrogenlike ion with nuclear charge Z, g1s �
�2�3� �1 1 2

p
1 2 �Za�2 �, plus additional corrections for

finite nuclear size and mass, and for QED effects. The
QED effects are calculated up to order �a�p�4 for the
free electron (cf. [28], and references therein). Additional
bound-state QED corrections are known nonperturba-
tively in Za up to order �a�p� [19,20]. For the current
theoretical value we adopt

g�12C51� � 2.001 041 589 9�10� . (7)

The individual contributions to the theoretical value are
presented in Table I. The value in (7) and also Table I
deviate from that quoted in [15] in several respects. First,
the updated value [1] for the fine-structure constant a was
employed, a � 1�137.035 999 76�50�. All calculations
presented in [19] and cited in [15] are based on the value
a � 1�137.035 989 6. This change does not affect any of
the bound-state QED calculations at the precision given
here. However, the leading Dirac-theory term and the
order-�a�p� term for the free-QED contributions are
sensitive to it on the 10210 level. Employing the old value
increases the total theoretical number by 1 3 10210.
The recent uncertainty of a causes an uncertainty of
2 3 10211 in the prediction for g. Since the value for a

from [1] is mainly based on the g 2 2 measurement for
011603-2
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TABLE I. Theoretical contributions to g�12C51�. Where no
error margin is given, it is less than one unit of the last digit. The
uncertainty for the bound-state QED of order �a�p� is purely
numerical, that for bound-state QED, order �a�p�2, results from
employing a perturbation series in Za.

Dirac theory
(including binding) 1.998 721 354 4 [37]

Finite-size correction 10.000 000 000 4 [38]
Recoil 10.000 000 087 6 [35]
QED, free, order �a�p� 10.002 322 819 5 [39]
QED, bound, order �a�p� 10.000 000 844 2�9� [19,23]
QED, free, orders �a�p�2

to �a�p�4 20.000 003 515 1 [28]
QED, bound �a�p�2,

�Za�2 term 20.000 000 001 1�4� [31]

Total theoretical value 2.001 041 589 9�10�

the free electron [29], we have employed, in addition, the
non-QED value from [30], a � 1�137 036 003 7�33�. It
leads to the same theoretical prediction for g but in that
case the uncertainty resulting from a is 1 3 10210.

A second improvement in Table I results from the new
estimates for bound-state QED corrections of order �a�p�.
The so-called “magnetic-loop” vacuum polarization cor-
rection, also termed “potential correction,” up to now had
an error margin of 3 3 10210 assigned to it [19,20]. Re-
cent estimations [23] show this term to be of the order
�a�p� �Za�7 and for carbon therefore less than 1 3 10211

in absolute magnitude. The numerical calculations for
the leading vacuum polarization contributions (the “wave-
function correction” in [19,20]) were recently confirmed
by an analytic calculation [22,23] to better than 10210.
In total, this leaves an uncertainty of 9 3 10210 from
the self-energy contributions to the bound-state QED cor-
rections of order �a�p�, without changing the numerical
value of the corresponding entry.

The third change in the table results from taking into
account the existing Za expansion for QED corrections of
the order �a�p�2. In [15], a rather large error margin was
employed instead. For that expansion, only the leading
term is known which is of purely kinematic origin [31,32].
It is given by

g�a�p�2,�Za�2 � 2

µ
a

p

∂2 �Za�2

6
3 �20.328 . . .� , (8)

where the last number is the coefficient of the �a�p�2

term in the expansion for the g factor for the free electron,
cf. formula (B6) in [1]. An estimate for the error margin
resulting from the Za expansion is obtained by subtract-
ing the leading �Za�2 term from the numerical value of
the order-�a�p� term and multiplying the result by �a�p�
[23,33]. To be conservative the obtained estimate is mul-
tiplied by a factor of 2 by which also bound-state terms
of order �a�p�3 and higher are thought to be taken into
account.
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The fourth improvement in Table I is due to recent
evaluations for the recoil effect that accounts for the fi-
nite mass of the nucleus. Shabaev and Yerokhin [34,35]
have presented results to all orders in Za for the order
�me�MN�, where MN is the mass of the nucleus. In addi-
tion Yelkhovsky independently calculated the �Za�4 term
for the order �me�MN � [36]. These new evaluations do not
affect the value in Table I but only its uncertainty which
now can be estimated to be less than 0.5 3 10210.

Experiment and theory for the g factor of 12C51 agree
within 1.5 standard deviations. Our experiment forms one
of the most stringent tests of QED in any highly charged
system up to now. The relative uncertainties of both values
are of the order 1029, and the largest uncertainty results
from the knowledge of the electron’s mass. Therefore it is
reasonable to turn around our arguments and instead derive
a new value for the atomic mass of the electron. Hereby
we rely on the validity of quantum electrodynamics to our
level of precision.

The mass of 12C51 in terms of the mass of neutral car-
bon, m�12C� � 12 u, is given by

m�12C51� � m�12C� 2 5me 1 EB�c2. (9)

where EB � 579.835�1� 3 1029 u c2 is the cumulative
binding energy for all 5 electrons [1]. By employing
Eqs. (5) and (9), the experimental value of the frequency
ratio vL�vc (6), and the theoretical prediction for the g
factor (7), we obtain for the atomic mass of the electron,

me � 0.000 548 579 909 24�29� �27� u . (10)

The first error margin results from the experimental uncer-
tainty of the ratio vL�vc and the second results from the
error margin of the theoretical prediction. The uncertainty
of the binding energies affects the result for the electron’s
mass only on the relative level of 10213. In total, our un-
certainty amounts to 4 3 10213 u which corresponds to
a relative precision of 7.3 3 10210. Our new value for
the electron’s mass is independent from the other high-
precision measurement [2].

We stress that the numerical value of the mass of the
electron also enters into our theoretical predictions. The
dominant influence of me in g�12C51� is given by the re-
coil correction. A change of the electron’s mass at the level
of 1027 would lead to a change of Dgrecoil of the order
1 3 10214. This is the dominant effect, and, although the
mass of the electron is also present in all other bound-state
calculations via the nuclear size and the numerical renor-
malization procedures, the effects are orders of magnitude
smaller. Our theoretical number does not change when in-
serting the new value.

Comparing our result (10) with the one from [2], Eq. (3),
we find only a small difference of about 1.5 standard devi-
ations. Our error margins are three times smaller. For the
proton-electron mass ratio, we obtain

mp

me
� 1836.152 673 3�14� , (11)
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where the Committee on Data for Science and Technol-
ogy value for the atomic mass of the proton was em-
ployed, mp � 1.007 276 466 88�13� u. The uncertainties
were added quadratically.

In conclusion, we have obtained a three times more ac-
curate value for the atomic mass of the electron than that
recommended in [1]. We consider our value as an im-
portant consistency check. In addition, our experimental
method differs from the one used by Farnham et al. [2].
We perform measurements on a single particle. This rules
out the possibility of different spatial positions of elec-
trons and ions used for the comparison. Furthermore, we
measure the Larmor and the cyclotron frequency simulta-
neously, thus avoiding systematic uncertainties due to tem-
poral fluctuations of the magnetic field. Our experimental
setup is applicable to any hydrogenlike system without ma-
jor changes. In 4He1 the bound-state QED effects, which
at present cause the largest theoretical uncertainty, are an
order of magnitude smaller than in 12C51. The mass of
this ion is known to a precision of 2.5 3 10210 [1] and
thus this system is also suitable for a determination of the
electron’s mass in our setup.
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