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Origin of Gauge Bosons from Strong Quantum Correlations
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The existence of light [a massless U(1) gauge boson] is one of the unresolved mysteries in nature.
We propose that light is originated from certain quantum orders in our vacuum. We construct quantum
spin models on lattice to demonstrate that some quantum orders can give rise to light without breaking
any symmetries and without any fine-tuning. Through our models, we show that the existence of light
can simply be a phenomenon of quantum coherence in a system with many degrees of freedom. Mass-
less gauge fluctuations appear commonly and naturally in strongly correlated quantum systems which
originally contain no gauge fields.
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In an attempt to explain the meaning of “empty space”
to a young child, I said “space is something not made of
atoms.” He replied “Then you were wrong to tell me last
time that only light is not made of atoms.” Indeed, light
and gravity are two singular forms of “matter” which are
very different from other forms of matter such as atoms,
electrons, etc. (Here I assume space � gravity.) The
existences of light and gravity —two massless gauge
bosons — are two big mysteries in nature.

Massless particles are very rare in nature. In fact the
photon and the graviton are the only two massless particles
known to exist. In condensed matter systems, one encoun-
ters more kinds of gapless excitations. However, with a
few exceptions, all the gapless excitations exist because
the ground state of the system has a special property called
spontaneous breaking of a continuous symmetry [1,2]. For
example, gapless phonons exist in a solid because a solid
breaks the continuous translation symmetries. There are
precisely three kinds of gapless phonons since the solid
breaks three translation symmetries in x, y, and z direc-
tions. Thus we can say that the origin of gapless phonons
is the translation symmetry breaking in solids.

With the above understanding of the origin of gapless
phonon in solids, we ask, “What is the origin of light?”
Here we adopt a point of view that all particles, such as
photons, electrons, etc. are excitations above a ground
state—the vacuum. The properties of those particles re-
flect the properties of the vacuum. With this point of view,
the question on the origin of light becomes a question on
the properties of vacuum that allow and protect the exis-
tence of light.

If light behaved like phonons in solids, then we could
conclude that our vacuum breaks a continuous symmetry
and light would be originated from symmetry breaking.
However, in reality, light does not behave like the pho-
nons. In fact, there are no phononlike particles (or more
precisely, massless Nambu-Goldstone bosons) in nature.
From the lack of massless Nambu-Goldstone bosons, we
can conclude that there is no continuous symmetry break-
ing in our vacuum. If the vacuum does not break any con-
tinuous symmetry, then what makes light exist?
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In a recent work [3,4], a concept —quantum order —was
introduced to describe a new kind of order that generally
appears in quantum states at zero temperature. Quantum
orders that characterize universality classes of quantum
states (described by complex ground state wave functions)
are much richer than classical orders that characterize uni-
versality classes of finite temperature classical states (de-
scribed by positive probability distribution functions). In
contrast to classical orders, quantum orders cannot be
described by broken symmetries and the associated order
parameters. A new mathematical object —projective sym-
metry group (PSG)—was introduced to characterize quan-
tum orders. In a sense, we can view a quantum order as a
dancing pattern in which particles waltz around each other
in a ground state. The PSG is a mathematical description
of the dancing pattern. In contrast, the classical order in a
crystal describes just a static positional pattern, which can
be characterized by symmetries.

In Ref. [3], various quantum orders are studied. It was
found that different quantum orders (characterized by dif-
ferent PSG’s) can have distinct low energy properties. In
particular, certain quantum orders allow and protect gap-
less excitations even without breaking any continuous sym-
metry. This leads us to propose that it is the quantum order
in our vacuum that allows and protects the existence of
light. In other words, light originates from quantum order.

To support our idea, in the following, we are going to
study a concrete SU�Nf � spin model [5,6] in 3D and show
that its ground state contains a gapless collective fluctua-
tion given by Eq. (12) which behaves in every way like a
U(1) gauge fluctuation. More importantly, we identify the
quantum order (or the PSG) in the ground state and argue
that the gapless property of the U(1) gauge fluctuations is a
robust property protected by the quantum orders. A small
change of the Hamiltonian cannot destroy the gapless U(1)
gauge fluctuations. We mention that a connection between
QCD and a lattice spin model was pointed out in Ref. [7],
using the concept of the quantum critical point. In our
example, we see that the massless property of light is not
due to criticality. It is a generic property of a quantum
phase.
© 2001 The American Physical Society 011602-1



VOLUME 88, NUMBER 1 P H Y S I C A L R E V I E W L E T T E R S 7 JANUARY 2002
We start with a SU�Nf�-spin model [5,6] on a 3D cubic
lattice. The states on each site form a representation of
rank Nf�2 antisymmetric tensor of SU�Nf�. We note that
those states can be viewed as states of Nf�2 fermions with
fermions cai, a � 1, . . . , Nf in the fundamental represen-
tation of SU�Nf�. Thus we can write down the Hamilto-
nian of our model in terms of the fermion operators:

H � JP

X
�i1i2i3i4�

�Sab
i1

Sbc
i2

Scd
i3

Sda
i4

1 H.c.� , (1)

where the sum is over all plaquettes �i1i2i3i4�,

Sab
i � c

y
aicbi 2 N21

f dabc
y
cicci . (2)

The Hamiltonian has three translation symmetries and six
parity symmetries Px : x ! 2x, Py: y ! 2y, Pz: z ! 2z,
Pxy : x $ y, Pyz : y $ z, Pzx: z $ x. The Hamiltonian

also has a charge conjugation symmetry C: cai ! c
y
ai.

To find the ground state of the above systems, we use
projective construction (which is a generalization of the
slave-boson approach [5,8,9]) to construct the ground state.
We start with a mean-field parton Hamiltonian

Hmean � 2
X
�ij�

�cy
a,ixijca,j 1 H.c.� , (3)

where x
y
ij � xji. The mean-field Hamiltonian allows us

to construct a trial wave function for the ground state of
the SU�Nf�-spin system Eq. (1):

jC
�xij�
trial � � P jF

�xij�
mean� , (4)

where jF
�xij�
mean� is the ground state of the mean-field Ham-

iltonian Hmean and P is the projection to states with Nf�2
fermion per site. Clearly the mean-field ground state is a
functional of xij. The proper values of xij are obtained

by minimizing the trial energy E � �C
�xij�
trial jHjC

�xij�
trial �.

The relation between the physical operator Sab and the
parton operator ca essentially defines the projective con-
struction [10]. For example, the fact that the operator Sab

i
is invariant under local U(1) transformations

cai ! eiuicai, Sab
i ! Sab

i (5)

determines the high energy U(1) gauge structure in the
parton mean-field theory:

cai ! eiui cai, xij ! eiuixije2iui. (6)

The U(1) gauge structure has a very real meaning: two
gauge equivalent Ansätze give rise to the same physical
state after projection

jC
�xij�
trial � � jC

�eiui xije2iuj �
trial � . (7)

Usually it is hard to calculate the trial energy E �
�CtrialjHjCtrial�. In the following, we calculate xij
by minimizing the mean-field energy Emean �

�F
�xij�
meanjHjF

�xij�
mean� which approaches to the exact ground

state energy in the large Nf limit [5,6]. We assume
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jF
�xij�
mean� to respect the SU�Nf� symmetry, which leads to

�F
�xij�
meanjcaic

y
bjjF

�xij�
mean� � dabx̃ij. We find

Emean

JPN4
f

�
X

�i1i2i3i4�
�x̃i1i2x̃i2i3 x̃i3i4x̃i4i1 1 H.c.� 1 O�N21

f � .

Since a p flux in a plaquette makes x̃i1i2 x̃i2i3 x̃i3i4x̃i4i1 to
be a negative number, we expect the Ansatz that minimizes
Emean to have p flux on every plaquette. Such an Ansatz
can be constructed and takes the form [11]

x̄i,i1x̂ � 2ix, x̄i,i1ŷ � 2i�2�ix x,

x̄i,i1ẑ � 2i�2�ix1iy x .
(8)

Such an Ansatz, after projection, gives rise to a correlated
ground state for our SU�Nf�-spin system.

In the momentum space, the mean-field Hamiltonian has
the form

Hmean � 2
X
k

0
C

y
a,kG�k�Ca,k , (9)

where

CT
a,k � �ca,k, ca,k1Qx , ca,k1Qy ,ca,k1Qx1Qy � ,

Qx � �p, 0, 0�, Qy � �0, p, 0� ,

G�k� � 2x�sin�kx�G1 1 sin�ky�G2 1 sin�kz�G3�

and G1 � t3 ≠ t0, G2 � t1 ≠ t3, and G3 � t1 ≠ t1. The
momentum summation is over a range kx [ �2p�2, p�2�,
ky [ �2p�2, p�2�, and kz [ �2p, p�. Since �Gi ,Gj	 �
2dij, i, j � 1, 2, 3, we find partons have a dispersion

E�k� � 62x

q
sin2�kx� 1 sin2�ky� 1 sin2�kz� . (10)

The mean-field ground state jFmean� is obtained by filling
the negative energy branch. We see that the dispersion has
two nodes at k � 0 and k � �0, 0, p�. Thus there are 2Nf

massless four-component Dirac fermions in the continuum
limit. The low energy theory has Lorentz symmetry. In-
cluding the collective phase fluctuations of the Ansatz, the
low energy effective theory has the form

L �
X

i
c

y
a,ii�≠t 1 ia0�ca,j 1

X
ij

c
y
a,ix̄ijeiaij ca,j .

In the continuum limit, it becomes L � c̄aaDmgmcaa

with Dm � ≠m 1 iam, a � 1, 2, and gm are 4 3 4 Dirac
matrices [11]. Integrating out the high energy fermions
generates dynamics for the am field [see Eq. (17)]. We

see that our correlated ground state, P jF
�x̄ij �
mean�, supports

massless U(1) gauge fluctuations and 2Nf massless Dirac
fermions.

In the following we argue that the appearance of the
massless U(1) gauge fluctuations and the massless Dirac
fermions is not a special property of the particular state
constructed above. It is a universal property of a quantum
phase (characterized by a particular quantum order). We
first find the PSG of the constructed state. Then we argue
that the PSG is a universal property of a quantum phase by
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showing that radiative corrections cannot change the PSG.
Last we show that any state described by the same PSG
(i.e., any state in the same quantum phase) has the same
massless U(1) gauge fluctuations and the same massless
Dirac fermions. We remark that the stability of the mass-
less U(1) gauge fluctuations in 3 1 1D is not new. How-
ever, the stability of massless Dirac fermions is new and
the PSG approach puts the stability of the massless U�1�
gauge fluctuations and the stability of massless Dirac fer-
mions on the same footing.

The PSG [3,4] that characterizes the quantum order in
the above correlated state is given by

Gx�i� � �2�iy1iz eiux Gy�i� � �2�iz eiuy ,

Gz�i� � eiuz Gpx�i� � �2�ix eiupx ,

Gpy�i� � �2�iy eiupy Gpz�i� � �2�iz eiupz , (11)

Gpxy�i� � �2�ixiy eiupxy Gpyz�i� � �2�iyiz eiupyz ,

GC�i� � �2�ieiut Gpzx�i� � �2��ix1iy� �iy1iz �eiupzx .

The invariant gauge group (IGG) of the Ansatz is G �
�eiu	 � U�1�, which is a (normal) subgroup of the PSG.
Here Gx,y,z are the gauge transformations associated with
the three translations, Gpx,py,pz are associated with the
three parities Px , Py , Pz , and Gpxy,pyz,pzx are associated
with the other three parities Pxy , Pyz, Pzx , and GC is as-
sociated with charge conjugation transformation C: xij !
2xij. The Ansatz is invariant, say, under the party trans-
formation Px followed by the gauge transformation Gpx .

To show that the PSG is a universal property of a quan-
tum phase [3], we start with the mean-field state charac-
terized by xij � N21

f �caic
y
aj�. If we include perturbative

fluctuations around the mean-field state, we expect xij to
receive radiative corrections dxij. However, the perturba-
tive fluctuations can change xij only in such a way that xij
and xij 1 dxij have the same projective symmetry group.
This is because if xij and the Hamiltonian have a symme-
try, then dxij generated by perturbative fluctuations will
have the same symmetry. The transformation generated
by an element in PSG just behaves like a symmetry trans-
formation in the perturbative calculation. The mean-field
ground state and the mean-field Hamiltonian are invari-
ant under the transformations in the PSG. Therefore, dxij
generated by perturbative fluctuations will also be invariant
under the transformations in the PSG. Thus the perturba-
tive fluctuations cannot change the PSG of an Ansatz. Also
if we perturb the SU�Nf �-spin Hamiltonian Eq. (1) without
breaking any symmetries, the induced dxij is still invari-
ant under the transformations in the PSG. Thus the PSG is
robust against small perturbations of the Hamiltonian and
it is a universal property of a quantum phase. The PSG can
change only when the fluctuations have an infrared diver-
gence which will drive a phase transition. From Eq. (18),
we see that the coupling between the U(1) gauge field and
the massless Dirac fermions is irrelevant at low energies.
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Thus there is no infrared divergence in our model and the
interaction between fermions and gauge field cannot make
the gauge field and fermions massive (see below).

To understand how quantum orders and PSG’s protect
the gapless excitations without breaking any symmetries,
we first find out the possible fluctuations at low energies.
The first kind of low energy excitations is described by the
particle-hole excitations of the fermions across the Fermi
points. The SU�Nf�-spin wave functions for such a kind of

excitation are given by jC
�x̄ij�
exc � � P c

y
k1

ck2 jF
�x̄ij�
mean�. The

second kind of low energy excitations is the collective ex-
citations described by the phase fluctuations of the Ansatz:
xij � x̄ijeiaij . The SU�Nf �-spin wave functions for such
collective excitations are given by

jC
�x̄ijeiaij �
exc � � P jF

�x̄ij eiaij �
mean � . (12)

To see that the massless fermion excitations are pro-
tected by the quantum order, we need to consider the most
generic Ansätze xij that have the same PSG [Eq. (11)] and
check if the fermions are still massless for those generic
Ansätze. The most general translation symmetric Ansatz
has the form

xi,i1m � xm�2�iymz �2�ix�my1mz�. (13)

To have the parity symmetry i ! 2i, the Ansatz should
be invariant under transformation i ! 2i followed by a
gauge transformation �2�i. This requires that xm �
�2�mx2m � �2�mxy

m. To have charge conjugation sym-
metry xij must change sign under gauge transformation
Wi � �2�i. This requires that xm � 0, if m � eyen.
Thus the most general Ansatz has the form

xi,i1m � xm�2�iy mx �2�ix �mx1my�,

xm � 0, if m � even, (14)

xm � 2xy
m � 2x2m .

In the momentum space, x vanishes at k � 0 and �0, 0, p�.
Thus the PSG protect the massless Dirac fermions.

To see that the massless collective fluctuations described
by aij are protected by the quantum order, we need to show
the collective fluctuations are massless for the most gen-
eral Ansatz that have the same PSG [Eq. (11)]. For any
Ansatz that is invariant under the PSG, it is also invariant
under the IGG G � �eiu	 � U�1� which is a subgroup of
the PSG. In this case aij and ãij � aij 1 ui 2 uj label
the same quantum state (and are said to be gauge equiva-
lent). [See Eq. (7).] We see that aij describes a U(1) gauge
fluctuation. Since the energy of the fluctuation E�aij� sat-
isfies E�aij� � E�ãij�, the mass term �aij�2 is not allowed
and there is no Anderson-Higgs mechanism to give the
U(1) gauge field a mass. Thus the U(1) gauge fluctuations
are gapless for any Ansatz that has the PSG in Eq. (11).

In the standard analysis of the stability of the massless
excitations, one needs to include all the counterterms that
have the right symmetries into the Lagrangian, since those
011602-3
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terms can be generated by perturbative fluctuations. Then
we examine if those allowed counterterms can destroy the
massless excitations or not. In our problem, we need to
consider all the possible corrections to the mean-field
Ansatz. However, the new feature here is that it is incor-
rect to use the symmetry group to determine the allowed
corrections. We should use PSG to determine the allowed
corrections in our analysis of the stability of the massless
excitations.

Next we consider a model that contains both massless
and massive fermions. The mean-field Hamiltonian is

Hmean � 2
X
�ij�

�cy
a,ixijca,j 1 H.c.�

2
X
�ij�

�ly
a,ixijt3la,j 1 H.c.� 2

X
i

l
y
a,imt1la,i ,

(15)

where a � 1, . . . , Nf , a � 1, . . . ,N 0
f , la is a doublet:

lT
a � �l�1�

a ,l�2�
a �, and xij is given in Eq. (8). The model

has a U(1) gauge structure defined by the gauge trans-
formation ca,i ! eiui ca,i, la,i ! eiui la,i, and xij !

ei�ui2uj�xij. Clearly, the model has a SU�Nf� 3 SU�N 0
f �

global symmetry. The gauge invariant physical operators
are given by c

y
a,icb,i, l

y
a0,ilb 0,i, and c

y
a,ila0,i.

In the momentum space, the above Hmean be-
comes Hmean � 2

P0
k C

y
a,kG�k�Ca,k 1 L

y
a,kG̃�k�La,k,

where L
T
a,k � �la,k, la,k1Qx

, la,k1Qy
, la,k1Qx1Qy

�, Qx �
�p, 0, 0�, Qy � �0, p, 0�, G̃�k� � 2x�sin�kx�G̃1 1

sin�ky�G̃2 1 sin�kz�G̃3� 1 mG̃m, and G̃1 � t3 ≠ t0 ≠

t3, G̃2 � t1 ≠ t3 ≠ t3, G̃3 � t1 ≠ t1 ≠ t3, and
G̃m � t0 ≠ t0 ≠ t1. We see that there are 2Nf massless
Dirac fermions and 4N 0

f massive Dirac fermions in the
continuum limit. Those fermions carry crystal momenta
near k � 0 and k � �0, 0, p�. The PSG that characterizes
the above mean-field state is still given by Eq. (11), which
acts on both c and l. Since IGG � U�1�, the fluctuations
around the mean-field state contain a U(1) gauge field at
low energies. After including the U(1) gauge field and in
the continuum limit, the low energy effective theory takes
the form

L �
2NfX
I�1

c̄IDmgmcI 1

4N 0
fX

J�1

l̄JDmgmlJ 1 ml̄JlJ ,

(16)
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where Dm � ≠m 1 iam and gm are the g matrices. After
integrating out high energy fermions, we get

L �
2NfX
I�1

c̄I DmgmcI 1
a21

8p
�E2 2 B2� , (17)

where the fine structure constant at energy scale E is

a21�E� �
2

3p
�2Nf ln�E0�E� 1 4N 0

f ln�E0�m�� , (18)

where E0 is the lattice energy scale. We have assumed
m ø E0.

In this Letter we propose that light (and other non-
Abelian gauge bosons) is originated from the quantum or-
der in our vacuum. To demonstrate this idea, we construct
a lattice model with SU�Nf � 3 SU�N 0

f � spins. We show
that in the large Nf and N 0

f limit, our lattice model has a
ground state characterized by the quantum order Eq. (11).
We find that the PSG (or the quantum order) protects the
gapless U(1) gauge fluctuations and the massless nonchi-
ral Dirac fermions (when Nf . 0). We note that the low
energy fermion excitations in our model have the Lorentz
invariance, which is also protected by the quantum order.
It would be interesting to find a lattice model that gives
rise to a U�1� 3 SU�2� 3 SU�3� gauge structure together
with chiral leptons and quarks.

This research is supported by NSF Grant No. DMR-97-
14198.

*Electronic address: URL: http://dao.mit.edu/~wen
[1] Y. Nambu, Phys. Rev. Lett. 4, 380 (1960).
[2] J. Golstone, Nuovo Cimento 19, 154 (1961).
[3] X.-G. Wen, cond-mat/0107071.
[4] X.-G. Wen, cond-mat/0110397.
[5] I. Affleck and J. B. Marston, Phys. Rev. B 37, 3774 (1988).
[6] N. Read and S. Sachdev, Phys. Rev. B 42, 4568 (1990).
[7] R. B. Laughlin, in Proceedings of the Inauguration Con-

ference of the Asia-Pacific Center for Theoretical Physics,
Seoul, Korea, 1996, edited by Y. M. Cho, J. B. Hong, and
C. N. Yang (World Scientific, Singapore, 1998).

[8] G. Baskaran, Z. Zou, and P. W. Anderson, Solid State Com-
mun. 63, 973 (1987).

[9] G. Baskaran and P. W. Anderson, Phys. Rev. B 37, 580
(1988).

[10] X.-G. Wen, Phys. Rev. B 60, 8827 (1999).
[11] A. Zee, in M. A. B. Bég Memorial Volume (World Scientific,

Singapore, 1992).
011602-4


