VOLUME 88, NUMBER 1

PHYSICAL REVIEW LETTERS

7 JANUARY 2002

Dissipation, Noise, and Vacuum Decay in Quantum Field Theory
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We study the process of vacuum decay in quantum field theory focusing on the stochastic aspects
of the interaction between long- and short-wavelength modes. This interaction results in a diffusive
behavior of the reduced Wigner function describing the state of long-wavelength modes, and thereby to
a finite activation rate even at zero temperature. This effect can make a substantial contribution to the

total decay rate.
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In this Letter we investigate how stochastic interactions
between long- and short-wavelength modes affect vacuum
decay in scalar quantum field theory. Two of the present
authors have already considered the relevance of stochas-
ticity in the context of the creation from nothing of the
Universe [1]. Our analysis of that problem led to the
conclusion that the noise-induced transition amplitude was
actually larger than the usual quantum estimates [2]. How-
ever, it remained unclear whether the relevance of stochas-
ticity for the full decay amplitude was a peculiarity of
gravitationally bound systems, or rather a generic feature
of vacuum decay in field theory. The results we discuss
here point quite conclusively in the second direction. In
pursuit of clarity, we omit most of the technical details,
which shall be reported in separate publications [3,4].

As a simple nongravitational example, let us consider
a self-interacting scalar field ® in Minkowski spacetime.
The classical action is

Sren[P] = —%f d*x <aq>aq> + M?®P? — %gqﬁ).

ey

Although we keep % explicit we set ¢ = 1, M has units of
length_l, & has units of M\/E, and g of M/\/ﬁ For sim-
plicity, we assume that renormalization has already been
carried out and that Eq. (1) is a good description of the
relevant dynamics. This means that the parameters M?
and g may well be renormalization point dependent; in
any case, any such dependence will be taken as given. This
model may be considered as the limiting case of the class
of models studied by Baacke and Kiselev [S], when the
coupling in the quartic self-interaction is very small.

We are concerned with situations where the potential
displays a local minimum, separated from the absolute
minimum by a potential barrier. A system of few degrees
of freedom, prepared in a false vacuum state within a po-
tential well, may decay in essentially two different ways,
namely, by tunnel effect, that is, going through the barrier
in a classically forbidden trajectory, or else by activation,
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that is, jumping over the barrier [6,7]. In systems with
few degrees of freedom, there must be an external agent,
typically a thermal source, for activation to be possible.
Activation results from the system being driven by noise
originating in the source.

In either case, the decay probability follows the Ar-
rthenius law P ~ Ae” 8. In the tunnel effect, B = Sg/h,
where /i is Planck’s constant and Sg is the action for the
trajectory which goes under the barrier in Euclidean time
[8]. In activation, B = V,/kgT, where kg is Boltzmann’s
constant, T is the temperature, and V; is the height of the
free energy barrier measured from the false vacuum [9].
We can see that activation disappears as 7 — 0.

Our thesis is that in field theories there is a phenome-
non similar to activation, even in the absence of an exter-
nal environment and, most remarkably, that this simulated
activation contributes to vacuum decay probability even
at zero temperature. This phenomenon exists because,
while vacuum decay concerns mainly the long-wavelength
modes in the field, these modes evolve in the environment
provided by the short-wavelength ones. Because of the
time dependence of the long-wavelength modes, even if
the short-wavelength modes were initially prepared in their
vacuum states, these will evolve into coherent superposi-
tions of many particle states. The energy to create these
particles is provided by the long-wavelength modes. On
the other hand, it is not possible to predict the exact num-
ber of particles to be created. For Bose-Einstein statistics,
for example, if N particles are created in the mean, then
the dispersion in this number is of order /N(N + 1), and
it is never negligible.

Therefore, we find a dissipative term in the dynamics of
the long-wavelength modes, representing the energy trans-
fer towards the short-wavelength modes, but also a sto-
chastic element, related to the fluctuations in the energy
flux. These two terms are related to each other through
the fluctuation-dissipation theorems. We must stress that
the presence of one of them implies the presence of the
other as well. Unlike in Kramers’ activation, this environ-
ment is intrinsic to the system. We should point out that
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because of this same reason we are not allowed to pre-
scribe the characteristics of noise and dissipation indepen-
dently of the system dynamics. This means that it is not
possible in general to assume Ohmic dissipation or white
noise [10].

More concretely, tunneling occurs in models where the
system may be trapped into a metastable state, which is
separated from the basin of attraction of the true vacuum by
a potential barrier. There is a saddle point on this barrier,
representing the critical bubble, and most of the tunneling
dynamics is concerned with motion along the most likely
escape path [11], which goes through the saddle in the
direction of steepest descent. It is possible to identify a
few degrees of freedom which parametrize the different
configurations on this path; the remaining (infinite) degrees
of freedom describe deviations from the most likely escape
route. In the conventional approaches to tunneling, the role
of these fluctuations is downplayed: they renormalize the
action for the few distinguished parameters and provide
a prefactor which, after the contributions to the effective
potential have been included in the exponential, is of order
one [12]. We intend to focus on the backreaction of the
fluctuations away from the most likely escape path on the
quantum dynamics of the critical bubble; for this purpose,
we borrow tools from quantum open systems theory, by
considering the few distinguished degrees of freedom as
a system interacting with the environment provided by the
transversal fluctuations.

The technical complexity of the problem increases
sharply with the amount of information one wishes to
retain within the system. For example, one may parame-
trize the most likely escape path following Ref. [13].
As shown in this reference (and earlier in Ref. [14]), a
time dependent bubble excites the degrees of freedom in
the environment, thus setting up the kind of dynamical
interplay we wish to analyze (see also Ref. [15]). To
be able to focus on the new (dynamical) aspects of the
problem, over and above its geometrical aspects, we
adopt an intentionally simplified parametrization of the
most likely escape path which retains the essentials of the
physics involved.

Let us return to the scalar field theory above. The poten-
tial V(o] = %qubz - %gqb3 has a stable fixed point at
¢ = 0 and an unstable fixed point at ¢ = ¢, = 2g~'M?.
The former corresponds to zero energy, and the latter to
E = E;, = VM?$2/6 in a volume V. For intermediate
energies, we may have bound and unbound states. They
are separated by a potential barrier, which at zero energy
extends from ¢ = 0 to ¢ = dexit = 3¢p;/2. To identify
the relevant modes, we observe that if we consider fluc-
tuations around the unstable fixed point ¢, then modes
with wave number k > M are stable. The relevant modes,
which partake in the tunneling process, have k < M [16].
We therefore write the field as ® = ¢ + ¢, where the
first term contains only modes with £ < M, and the sec-
ond term contains the short wavelengths; ¢ is our system.
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In other words, the field ¢ represents the average of the
full field ® over volumes of order M 3. By construction,
¢ is slowly varying in space; it is technically simplest to
handle it as if it were actually spatially homogeneous. We
therefore regard the configurations along the most likely
escape path as a sequence of “top hat” field configura-
tions, parametrized by a single degree of freedom ¢ (7),
representing the field amplitude within a domain of size
M ™!, outside of which the system field vanishes. The cen-
ter of mass coordinates of the “hat” may be treated as col-
lective coordinates in the usual way and do not affect our
results [17].

If the quantum state of the full field is described
by a density matrix p(¢p, @, ¢, @', 1), the state of the
¢ field is described by the reduced density matrix
pr(h,d',t) = [de p(d, @, ', ¢, 1), or equivalently by
the reduced Wigner function

d .
rpn = [ e ”’“/”pr(cﬁ s - 5r)
@)

To second order in g and leading order in 7, f evolves
according to [4]

of 9 gh? 9*f

— ={H,,f} + — (I'f + A{N, - —,

USRS VRS

3

where the curly brackets are Poisson brackets, Hy =
¢*/2+ V(p), T'=[di'H(t — t¢(t'), and N =
[dt' N(t — t')¢(t)). The kernels H and N repre-
sent the effects of dissipation and noise, respectively.
They come from the quadratic part of the Feynman-
Vernon influence action [18]. Computing the influence
functional requires handling formally infinite quantities
(and in our case, also a linear term in ¢); regularization
and renormalization leave a finite residuum, which are
the one-loop correction to the effective potential and a
finite wave function renormalization. As we have already
remarked, we assume that these corrections are already
included in Eq. (1). This is sensible because, although
they may be quantitatively important, they do not affect
the nature of the problem [12].

Our approach to Eq. (3) will be the following: Itis clear
that if only the first term of the right-hand side is kept, the
equation reduces to the classical transport equation and
there is no tunneling. Retaining the first and last terms on
the right-hand side is equivalent to writing a Schrédinger
equation for the wave function of the homogeneous
mode, as if it were a closed system. Since this is a one-
dimensional problem, the tunneling rate may be computed
either by the instanton or the WKB method, which are
known to be equivalent in this case. We wish to know
if the middle (backreaction) term makes a substantial
contribution to the total rate. With this strategy in mind
we discard the third contribution to the right-hand side in
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Eq. (3), assuming implicitly that the backreaction term
is dominant (see below). It then reduces to Kramers’
equation which may be seen [4] to describe the evolution
of an ensemble of points evolving according to the
Langevin equation: d¢/dt = p(t),

Ly = Vo] + [ @G~ o) + €,
@

with initial conditions (¢;, p;) weighted according to the
initial Wigner function, and Gaussian noise characterized
by (£(1)&(¢')) = AN(¢t — t'). Although this representation
of the dynamics has an important heuristic value, only the
reduced Wigner function f has a direct physical meaning,
and it does not allow an interpretation as a classical dis-
tribution function in general (it is not generally positive
definite).

We are interested in the weak dissipation limit, as
discussed by Kramers [6], when the relaxation time is
long compared with the classical period of motion. On the
other hand, the memory time in the integrals in Eq. (3)
is determined by the frequencies in the environment,
which are large with respect to the dominant frequencies
in the system. Thus we are allowed to (and, in a formal
expansion in powers of /i, we must) use solutions to the
classical equations of motion within the memory terms;
these solutions may be written down explicitly in terms
of elliptic functions. This is a less drastic approximation
than the Markovian one discussed in Ref. [19]. We also
neglect transient terms (or in other words, we assume
t > M™'); this means that we can take the lower limit
of the time integrals in Eq. (3) as t = —. In the weak
dissipation limit the reduced Wigner function depends
only on the action variable J = % $d¢ p, and, aver-
aging over angles, Kramers’ equation reduces to a one-
dimensional Fokker-Planck equation df/dt + a®/9J =
0, where ® = —OQ'9f/0J — Af is the flux, and
QO = Q(J) is the frequency of the corresponding classical
motion [20]. The point of this analysis is that it is possible
to derive explicit expressions for the coefficients ® and
A in the Fokker-Planck equation [1,4]. Near the value J
of the action variable at the separatrix (that is, the limiting
trajectory which connects to the unstable equilibrium
point) these have finite values, while as J — 0 they
go to zero as E3, where E = Hy(J). In the thermal
activation problem one finds an identical equation, but the
coefficients decay linearly on E [6].

The weakness of noise and dissipation in our (vacuum
decay) problem reflects the origin of these effects in par-
ticle creation. Since particles are created in pairs, there
is a threshold for particle creation at frequency w ~ 2M.
At low energy, classical motion is mainly harmonic with
frequency M for small oscillations around the metastable
minimum; hence particle creation is weak. It never actu-
ally vanishes, though, because at any finite energy there is
a small deviation from harmonic motion. The amplitude of
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the component with frequency n{) decays as E" as E — 0,
which is enough to trigger particle creation [21].

The Fokker-Planck equation describes an initial value
problem subject to nontrivial boundary conditions at J =
0 and J = J,. These are vanishing flux d=0atJ =0,
and vanishing probability f = 0 at J = J;. The linear
operator L which is defined by Lf = d®/aJ is self-
adjoint with respect to an adequate inner product [4], and
the equation may be solved by an expansion in normal
modes in the usual way. A general solution is reconstructed
as a superposition of modes f, decaying as exp(—rt). For
a given r, f, oscillates as J — 0, and the modes must be
subject to a continuum normalization, as in the usual treat-
ment of the WKB wave function in quantum mechanics
[22]. The result is that, given any smooth initial condition
with mean energies of the order of the false vacuum energy
iM /2, the persistency amplitude P(t) = 27 [dJ f(J,1)
decays exponentially with a constant A for A = 1, turn-
ing to 1/ for longer times (this crossover is also observed
in the usual tunneling amplitude [23]). The constant is
[4] A = Aexp{— [dE %(E)} ~ Aexp{—a%}, where A
is of order 1, and a ~ 0.2. By contrast, the tunneling am-
plitude, in the corresponding approximation of only con-
sidering the homogeneous mode, yields a similar formula,
but with a ~ 4.8 [8]. We can see that, in this case, the
zero temperature activation rate is higher than the tunnel-
ing amplitude by an order of magnitude in the exponent.

We point out that the fact that in our example the acti-
vation amplitude is actually larger than the tunneling am-
plitude is model dependent. Roughly speaking, low and
broad barriers favor activation, while high and narrow bar-
riers favor tunneling. We also stress that these results must
be considered as preliminary, pending a more satisfactory
parametrization of the system and therefore a more realis-
tic modelization of the system-bath interaction. It is safe to
conclude, however, that activation should not be discarded
a priori but rather should be counted on as a potentially
significant contribution to the overall decay amplitude.

Note that we reach a different conclusion to that of
Ref. [24], where dissipation suppresses tunneling. How-
ever, a direct comparison between the two analyses cannot
be done as the two models differ essentially in the cou-
pling with the environment degrees of freedom, which is
quadratic in our case. Our analysis is closer to that of
Ref. [25], and it is certainly compatible with their conclu-
sions; see also Ref. [26].

Still, we stress that we should not expect a similar be-
havior in systems with few degrees of freedom. The fact
that in our problem the environment actually contained a
large enough number of degrees of freedom as to repre-
sent a continuum for all practical purposes is essential to
provide a suitable driving force. If some frequency inter-
vals were lacking, then there would arise islands of sta-
bility where no resonance is strong enough to move the
system forward. These islands would act as absolute bar-
riers to noise-induced decay, or at least would depress
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the noise induced amplitude much below the tunneling
estimates.

In conclusion, we have shown that vacuum decay in field
theory is qualitatively different from the same process in
systems with few degrees of freedom, because the former
are intrinsically open systems. Interaction between long-
and short-wavelength modes induce a stochastic dynam-
ics for the former and results in activation even at zero
temperature.
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