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In this Letter we consider a system of N pairwise finite-range interacting atoms and prove rigorously
that in the zero-range interaction limit all the eigenstates and eigenenergies of the Hamiltonian converge
to those corresponding to N atoms interacting via the Fermi-Huang regularized pseudopotential. Next,
we show that the latter eigensystem (if treated exactly) is invariant under a nontrivial transformation of
the interaction potential. Finally, we realize that most of the approximate schemes of many-body physics
do not exhibit this invariance: We use this property to resolve all inconsistencies of the Hartree-Fock-
Bogoliubov variational formalism known thus far.
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The realization of Bose Einstein Condensate [1] has
brought an enormous interest in developing new theo-
retical approaches and refining the existing ones. The
mean-field formalism with contact interactions has been
shown to provide a powerful tool for analyzing the prop-
erties of trapped Bose gases [2]. Unfortunately, the most
general variational mean-field approach, the Hartree-Fock-
Bogoliubov approximation (HFB), is not yet quite sat-
isfactory if used with contact interactions: It exhibits
UV divergencies, inconsistencies with the Hugenholtz-
Pines theorem [3], many-body T-matrix calculations [4],
and even with the very existence of atomic condensates
themselves [5]. Several heuristic modifications of the
theory were suggested [3,4,6,7], showing a good agree-
ment with the experimental data [8]. In this Letter, we
propose a novel, quite straightforward way to cure these
inconsistencies.

First, we prove rigorously that the regularized
Fermi-Huang pseudopotential [9] is not just an ansatz, but
provides the exact zero-range limit of the many-body
observables along with a cancellation of all the UV
divergencies. Second, we introduce a new family of
pseudopotentials parametrized by a free parameter L

(so-called L potentials): No exact (after the zero-range
approximation has been made) observable depends on it,
while some approximate treatments differ for different L.
The above conclusions are general and they do not rely on
any particular approximation. Finally, as an application of
this new potential, we find a particular value for L such
that HFB equations are entirely free of all inconsistencies
known thus far.

An explicit expression for the L potential reads

V̂L��r� � gLd��r� �≠r 1 L��r?� with gL �
g0

1 2 aL
,

(1)

where �r � �r1 2 �r2 is the relative coordinate of two atoms,
a is the s-wave scattering length, g0 � 2p h̄2a�m̃ is the
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usual effective coupling constant, and m̃ � m�2 is the
reduced mass. When L � 0, V̂L�0 coincides with the
Fermi-Huang pseudopotential. For a 1�r-divergent wave
function c��r� � ã�r 1 h� �r� [10], the action of the L
potential is

V̂Lc� �r� � gLd��r� �h��0� 1 Lã� . (2)

For a low-energy two-body body scattering process, the
eigenstates of the L potential coincide with the asymptotic
form of the s-wave eigenstates of any other interaction
potential of a scattering length a. However, for energies of
the order �h̄2�ma2� or higher, the actual finite size structure
of the potentials comes into play, and the range of the
applicability of the zero-range approximation reduces to
the particular case of a zero-energy resonance.

Now, we consider a system of N atoms of mass m and
coordinates �r� � � �r1, �r2, . . . , �rN � interacting via V̂L. The
Hamiltonian reads

Ĥ p.p. �
NX

i�1

p2
i

2m
1

amaxX
a�1

V̂L�ra� , (3)

where a � 1, . . . ,amax � N�N 2 1��2 labels ordered
pairs of atoms �ia , ja�, and �ra � �ria 2 �rja is the relative
position of the members of the ath pair. As a direct
consequence of Eq. (2), any eigenstate C��r�� of (3) is
a solution of an interaction-free Schrödinger equation
subject to the following contact conditions for all pairs a:

lim
ra!0

≠

≠ra

Å
�Ra�

ln�raC� � 2
1
a

, (4)

where �Ra� � ��� �Ra , � �riji fi ia, ja ���� is a set composed of
the coordinate of the center of mass �Ra � � �ria 1 �rja ��2
of the ath pair and all other coordinates not belonging to
this pair. Indeed, it is easy to show that the d singularities
in the action of the Hamiltonian (3) on a many-body state
C�� �r�� cancel each other if and only if C satisfies the
contact conditions (4). Notice that these contact conditions
do not depend onL, and thus no exact (after the zero-range
approximation has been made) eigenstate does.
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Now, we are going to show how regularized pseudopo-
tentials arise in the limit of zero-range interactions. For
this purpose, we consider N particles of mass m, interact-
ing via a potential which belongs to a one-parameter family
of square-well potentials: yR�r� � 2y

R
0 Q�R 2 r�. The

depth of the potential yR
0 . 0 is chosen in such a way

that the scattering length a is the same for all members of
the family, and each of them supports the same number of
s-wave bound states, either one or none depending on the
sign of the scattering length [11]. The Hamiltonian of the
system reads

Ĥ R �
NX

i�1

p2
i

2m
1

amaxX
a�1

yR�ra � . (5)

We wish to prove the following.
Statement.— In the limit of the infinitely small potential

range, the Green function of the finite-range-interaction
Hamiltonian (5) converges to the Green function of the
pseudopotential Hamiltonian (3):

lim
R!0

�E 2 Ĥ R �21 � �E 2 Ĥ p.p.�21. (6)

Proof.—As we saw above [see (4)], all the L potentials
lead to the same eigenstates (and thus the same Green func-
tion): Hence, without loss of generality, we can limit our
proof to the case of the Fermi-Huang pseudopotential V̂ 0.

Let us define two operator-valued functions:

ĜE
â � �E 1 ie 2 â�21, T̂

E
â,b̂ � �1 2 b̂ĜE

â �21b̂ .
(7)

The former is the retarded Green function at energy E for
a Hamiltonian â. The latter is the T matrix of a perturba-
tion b̂ in the presence of the background Hamiltonian â.
Two relations will be heavily used in what follows. First is
the Lippman-Schwinger relation between the Green func-
tion of the “full Hamiltonian” â 1 b̂ and the one of the
background:

ĜE
â1b̂ � ĜE

â 1 ĜE
â T̂

E
â,b̂Ĝ

E
â . (8)

The second is the Lupu-Sax formula [12] relating the T
matrices of the same perturbation but in two different back-
ground Hamiltonians â1 and â2:

T̂
E

â2 ,b̂ � �1 2 T̂
E

â1,b̂�ĜE
â2
2 ĜE

â1
��21T̂

E
â1,b̂ . (9)

Introduce also a family of “reduced Hamiltonians” Ĥ
R

�a�
and a family of reference Hamiltonians ĥE

a :

Ĥ
R

�a� �
NX

i�1

p2
i

2m
1

aX
b�1

yR�rb� and ĥE
a �

p2
a

2m̃
1 E ,

(10)

where �pa � � �pia 2 �pja ��2 is the relative momentum for
the ath pair. Each reference Hamiltonian is just a sum
of the relative kinetic energy for the corresponding pair
and the energy E at which the Green functions (6) are
010402-2
compared. The Green function of the ath reference Ham-
iltonian is proportional to the zero-energy Green function
for the relative motion of two particles:

	�r� jĜE
ĥE
a
j�r0�
 � 2

m̃

2p h̄2j�ra 2 �r 0aj
d��Ra 2 Ra

0�� .

(11)

In turn, the T matrix of the interaction potential ŷR
a �

yR �ra� in the presence of ĥE
a can be expressed through the

zero-energy two-body T matrix of it:

	�r� jT̂ E
ĥE
a ,ŷR

a
j �r0�
 � g0DR� �ra , �r 0a�d��Ra 2 R0

a�� . (12)

The kernel DR is zero when ra . R or r 0a . R and is nor-
malized to unity as

R
d3 �r d3 �r 0 DR��r, �r 0� � 1. An explicit

expression for it can be found in Ref. [13]. In the limit
of zero-range interaction, the kernel obviously converges
to a product of delta functions, and, hence, the T matrix
converges to

T̂
E

ĥE
a ,ŷR

a

R!0
! g0d��ra� . (13)

Notice that by construction of the reference Hamiltonian
ĥE
a neither the Green function Ĝ

E
ĥE
a

nor the T matrix T̂
E

ĥE
a ,ŷR

a

depends on energy E.
Using relations (8) and (9), the full many-body Green

function of the system can be rigorously expressed through
the zero-energy two-body T matrices (12) of the interac-
tion potential yR �r�. Removing from the Hamiltonian (5)
one pair interaction after another, we obtain the following
chain relation:

�E 2 Ĥ R�21 � Ĝ
E
Ĥ R � Ĝ

E
Ĥ R

�amax�

" · · ·

Ĝ
E
Ĥ R

�a�
� Ĝ

E
Ĥ R

�a21�

1 Ĝ
E
Ĥ R

�a21�
�1 2 T̂

E
ĥE
a ,ŷR

a
�ĜE

Ĥ R
�a21�

2 Ĝ
E
ĥE
a
��21

3 T̂
E

ĥE
a ,ŷR

a
Ĝ

E
Ĥ

R
�a21�

" · · ·

Ĝ
E
Ĥ�0�

�
µ
E 2

NX
i�1

p2
i

2m

∂21

. (14)

This relation is the cornerstone of the proof.
Imagine now that the full Green function Ĝ

E
Ĥ R acts on

a state jC
 whose wave function C��r�� is regular every-
where. Computation of the result of this action
	�r� jĜE

Ĥ R
jC
 involves expressions of a form T̂

E
ĥE
a ,ŷR

a
3

�ĜE
Ĥ R

�a21�
2 Ĝ

E
ĥE
a
�T̂ E

ĥE
a ,ŷR

a
J, where J��r�� is a regular func-

tion, and, in the limit R ! 0, leads to the expressions of
the following type:

g0d��ra�
∑
G��ra� 2

ã

ra

∏
. (15)

[In Eq. (15), both G� �ra� and ã depend also on �Ra�.] G
is given by
010402-2
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G� �ra� �
Z

d3N �r0� 	�r� jĜE
Ĥ

R!0
�a21�

j �r0�
g0d��r 0a�J��r0�� ,

and ã � 2g0�m̃�2p h̄2�J��r��j�ra�0. Now using the defi-
nition of the Green function Ĝ

E
Ĥ

R
�a21�

, we find that G��ra �
has an UV singularity of form ã�ra [the same as the
second term in expression (15)] (see [14]). This leads to

g0d��ra�
∑
G��ra� 2

ã

ra

∏
� V̂ 0

aG� �ra� , (16)

i.e., the expression (15) involves the Fermi-Huang pseudo-
potential V̂0

a � V̂0�ra � [cf. (2) at L � 0]. This justifies
the following limit:

T̂
E

ĥE
a ,ŷR

a
�ĜE

Ĥ
R

�a21�
2 Ĝ

E
ĥE
a
� R!0
! V̂ 0

aĜ
E
Ĥ

R!0
�a21�

. (17)

Inserting the above substitution at every level of the chain
procedure (14) and collecting all the terms [15], one finally
arrives at limR!0Ĝ

E
Ĥ R

� Ĝ
E
Ĥ p.p. , Q.E.D.

Notice that the relation (17) clearly shows that the role
of the regularizing operator in the pseudopotential expres-
sion (1) is to subtract the free propagators Ĝ

E
ĥE
a

already

taken into account by the two-body T matrix T̂
E

ĥE
a ,ŷR

a
.

As a result, UV divergencies disappear at each level of
the chain recursion (14).

As an application of the L potential, we consider now
the HFB theory for N bosons interacting via VL with
a . 0, in a box of size L. As we will see, the L freedom
in choosing the effective Hamiltonian (3) offers the fol-
lowing advantages: (a) unlike for the conventional HFB
formalism �L � 0�, there exists a range of L such that the
atomic condensate constitutes the minimum of the HFB
functional in the low density regime [16]; (b) for a par-
ticular value, L � L�, HFB equations are consistent with
the results of the ladder approximation for the many-body
T matrix [4] and the Hugenholtz-Pines theorem is satis-
fied; (c) in the vicinity of L�, the ground state energy of
the system is consistent with Bogoliubov’s predictions.

The HFB approximation is twofold. First, it breaks the
U�1� symmetry: The atomic field ĉ is split into a classical
field F and a quantum fluctuation f̂ � ĉ 2 F. Second,
the exact density operator is replaced by a Gaussian varia-
tional ansatz: D̂ � exp�2K̂�kBT ��Z, where Z is the par-
tition function and the quadratic variational Hamiltonian is

K̂�h,D,F� �
1
2

Z Z
d3 �r1 d3 �r2�f̂y� �r1�h��r1, �r2�f̂��r2�

1 f̂y��r1�D� �r1, �r2�f̂y��r2� 1 H.c.� . (18)

For what follows, we introduce the coordinates �R � ��r1 1
�r2��2 and �r � �r1 2 �r2. The second-quantized form of the
full Hamiltonian (3) reads

Ĥ L �
Z

d3 �R

Ω
ĉy

µ
2

h̄2

2m
D

∂
ĉ 1

gL
2
ĉyĉy

L
Œ

ĉĉ

æ
,

(19)
010402-3
where

F�
L
Œ

�R, �R� � lim
r!0

�≠r 1 L� �rF� �R 1 �r�2, �R 2 �r�2�� (20)

is a shortened notation for the action of the regulariz-
ing operator [see (1)]. Using Wick’s theorem, we obtain an
approximate grand canonical potential J � EL 2 mN 2

TS, where EL � Tr�Ĥ LD̂� is the energy, N is the number
of particles, and S �2kBTr�ln�D̂�D̂� is the entropy. Mini-
mization of J with respect to the three variational fields
h,D, and F leads to the following implicit equations for
these fields:

h� �r1, �r2� � 2
h̄2

2m
� �=2d� � �r� 1 �h̄SL11 2 m�d��r� ,

D��r1, �r2� � h̄SL12d��r� , (21)

2
h̄2

2m
DF 1 �gL�2ñ 1 jFj2� 2 m�F 1 gLk̃LF

� � 0 ,

where h̄SL11 � 2ngL and h̄SL12 � gL�F2 1 k̃L� are the
self-energies, ñ � Tr�f̂y� �R�f̂� �R�D̂� is the noncondensed
density, n � jFj2 1 ñ is the total density, and

k̃L � k̃�
L
Œ

�R, �R�

results from the action of the regularizing operator (20) on
the anomalous density k̃��r1, �r2� � Tr�f̂��r1�f̂��r2�D̂�.

The diagonalization of the variational Hamiltonian K̂
leads to the following quasiparticle spectrum:

h̄vk �

µ
h̄2k2

2m
1 2gLF

2

∂1�2µ
h̄2k2

2m
2 2gLk̃L

∂1�2

.

(22)

Equations (21) and (22) clearly show that HFB is L de-
pendent. As it has been shown in Ref. [4], this approach is
able only to provide a Born approximation for the diagonal
self-energy h̄S11; hence, its explicit L dependence. How-
ever, this is not the case for h̄S12; indeed, the total pairing
field reproduces the contact conditions (4) of a two-body
wave function,

	ĉ��r1�ĉ��r2�
 � �F2 1 k̃0�
µ
1 2

a

r

∂
1 O �r� , (23)

and as a result h̄SL12 � g0�F2 1 k̃0� for all L.
Requiring that all the eigenenergies (22) are real, we

find that, for zero temperature and densities below a value
of ncrit �

p

192a3 , the existence of an atomic condensate
�F fi 0� implies the following constraint on L:

L�a # La , 1 with L�a �
k̃0

F2 1 k̃0
. (24)

At the lower limit L � L�, the L-regularized anomalous
density disappears, and the theory becomes fully consistent
with the results of the many-body T-matrix calculations in
the ladder diagrams approximation [4]:
010402-3
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k̃L� � 0; h̄SL
�

11 � 2ngL� ; h̄SL
�

12 � gL�F2,

gL� � g0

∑
1 1

k̃0

F2

∏
� TMB� �0, �0, �0; 0� , (25)

yielding a gapless spectrum [17,18].
Consider now the zero-temperature low-density limit of

our equations. Assuming La to be of the order of
p

na3

and neglecting all the terms of order na3 or higher, the
energy EL is independent of L and coincides with the
well-known Bogoliubov result

EL �
g0

2
nN

µ
1 1

128
15
p
p

p
na3 1 . . .

∂
. (26)

The L-potential based variational HFB model is there-
fore consistent with the perturbative Bogoliubov approach.
As the density increases, the parameter L� increases as
well, and at a critical density ncrit �

p

192a3 we find L�a �
1: The energy diverges and the mean-field treatment
breaks down.

Note in conclusion that the L invariance described in
our Letter holds even if the constant L is replaced by an
arbitrary fieldL� �R�. The generalization of our HFB theory
to the case of the trapped gases is thus straightforward:
One has simply to fix L as L� �R� � L��k̃0� �R�,F2� �R��
according to (24) at every point �R of the trap.

As an extension of this work, we mention that, using a
procedure similar to the 3D case, it is possible to obtain
the low-dimensional analogs of the L potential:

VL
2D� �r� � 2

p h̄2

m̃

1
log�qLR�

3 d� �r�
Ω
1 2 log�qLr�r

≠

≠r

æ
,

VL
1D�z� � 2

h̄2

m̃

L

La1D 2 1

3 d�z�
Ω
1 1

1
2L

≠

≠z

µÇ
01

2

Ç
02

∂æ
,

where q � eC�2, C is the Euler’s constant, R is the 2D
effective hard disk radius, and a1D is the 1D scattering
length [19,20].
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