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Simple Theory for the Two-Dimensional Child-Langmuir Law
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This paper presents, for the first time, a simple analytic theory for the two-dimensional (2D) Child-
Langmuir law. For electron emission over a finite patch on a planar cathode, the limiting current density is
derived approximately from first principles. The scaling laws are in excellent agreement with simulation
results. They predict the onset of virtual cathode formation in a 2D geometry; they also indicate that
electrons emitted from a cathode over only a restricted area may have a current density much exceeding
the classical (1D) Child-Langmuir value.
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The Child-Langmuir Law [1–3] gives the maximum
current density that can be transported across a planar
gap of gap separation D and gap voltage V . In the one-
dimensional model, this maximum current density is given
by

J�1� �
4´0

9D2

µ
2e

m

∂1�2

V 3�2, (1)

where e and m are, respectively, the charge and mass of
the emitted particle, and ´0 is the free space permittiv-
ity. Implicit in Eq. (1) is the neglect of relativistic ef-
fects and the assumption of zero electron emission velocity.
While Eq. (1) was published ninety years ago, no analo-
gous derivation for two dimensions (2D) has appeared in
the intervening years. This paper partially fills this void.

The complete solution of the 2D limiting current density
in a diode is extremely difficult to obtain analytically. It
requires the simultaneous solution of the force law, the
continuity equation, and the Poisson equation in two di-
mensions. Such 2D theories are very complicated [4]; the
results are neither transparent nor readily usable [5]. How-
ever, this 2D problem is of fundamental interest because
electron emission is often restricted to a finite patch on the
cathode surface. For example, modern cathodes, such as
ferroelectric cathodes, laser-triggered cathodes, field emit-
ter arrays, etc., have at times displayed an emission cur-
rent density higher than that expected from the classical
1D Child-Langmuir value [Eq. (1)]. The proper interpre-
tation of such results would have required, at a minimum,
an understanding of the 2D limiting current density. This
2D problem is clearly also relevant to the edge emission in
high power diodes.

In this paper, we shall not seek a complete 2D solu-
tion to the force law, continuity equation, and the Poisson
equation. Instead, we simply derive the condition for the
onset of turbulent behavior when a finite patch of the cath-
ode surface is allowed to emit, with a uniform emission
current density across the patch. The theory is simple and
intuitive, and is in excellent agreement with earlier simu-
lation results [6]. As we shall see toward the end of
this paper, the physical insight even leads to the predic-
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tion of the limiting current density for a three-dimensional
geometry.

A few years ago, the lack of a 2D Child-Langmuir solu-
tion prompted Luginsland et al. [6] to use two very differ-
ent particle-in-cell codes to simulate the maximum current
density, J�2�. The emission current density is uniform and
is restricted to a strip of width W on the cathode surface.
The strip is infinitely long. From the simulation data, the
following 2D Child-Langmuir Law was synthesized [6]:

J�2�
J�1�

� 1 1 0.3145
D

W
, (2)

where D is the anode-cathode separation. Luginsland
found that Eq. (2) fits the numerical data to within a few
percent for all W�D . 0.1. This statement is valid re-
gardless of the external magnetic field (ranging from zero
to 100 T) that is imposed along the electron flow direction.
When the emission current density exceeds the value given
in Eq. (2), the emitted electrons from the center line of the
emission strip are the first ones to be reflected, initiating
a virtual cathode [6]. It is clear from Eq. (2) that the 1D
Child-Langmuir law is recovered in the limit W ¿ D.

We shall first provide a derivation of Eq. (2), under the
assumption W ¿ D. In the model, the cathode is located
at z � 0, and the anode is located at z � D. Electrons are
emitted with a uniform current density, J, over the infinite
strip, 2W�2 , x , W�2, on the cathode. We impose an
infinite magnetic field in the z direction. We shall focus
mainly on the space charge field on the center line, �x, z� �
�0, 0�, of this emission strip since, as J is increased to
the 2D limiting value, the space charge field there exactly
cancels the vacuum electric field, V�D, causing reflection
of the emitted electrons.

Let r�x, z� be the charge density within the gap. An
incremental line charge, located at �x, z� with a line charge
density r�x, z�DxDz, yields an electric field at �x, z� �
�0, 0� with a magnitude

DE �
r�x, z�DxDz

2p´0

p
x2 1 z2

. (3)

On the center line, we need only to consider the z compo-
nent of the electric field by symmetry, and this component
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is obtained by multiplying Eq. (3) by the directional co-
sine, z��x2 1 z2�1�2. Thus, the space charge field on the
center line of the emitting strip is given by, upon summing
over the space charge within the gap,

E �
Z D

0
dz

Z W�2

2W�2
dx

r�x, z�z
2p´0�x2 1 z2�

. (4)

We now assume that W ¿ D, so that the charge density
r is roughly independent of x. With r�x, z� � r�z�, the
x integration in Eq. (4) can be performed to yield
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where, in writing the last expression of Eq. (5), we
have used the approximation, tan21�p� � p�2 2 1�p
for p ¿ 1. Since the injection current density, J �
r�z�y�z� � constant, where y�z� is the electron velocity,
we may write the total electric field, due only to the space
charge, as
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where we have included a multiplication factor, G, to ac-
count for the contributions due to the image charges. Since
E is the space charge electric field at a single location, it
must be proportional to J, and we take G to be the pro-
portionality constant defined by Eq. (6). The 2D limit-
ing current density, J�2�, is reached when this total self-
electric field equals the vacuum field, V�D. This gives
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The 1D Child-Langmuir law is obtained by setting W equal
to infinity. Thus, by definition, we have, from Eq. (7),
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Note that the value of G in Eq. (8) may easily be obtained
by using Eq. (1) and the familiar 1D Child-Langmuir ve-
locity solution y�z� in Eq. (8). Note further that this value
of G takes into account, exactly, the effects of all image
charges in this 1D limit. We assume that this G is also
applicable for the large but finite value of W [cf. Eq. (7)],
and this latter assumption is on the same footing as ap-
proximating r�x, z� by r�z� in Eqs. (4) and (5).

We take the ratio of Eqs. (7) and (8) to obtain, to first
order in 1�W ,
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. (9)

Since the last term in Eq. (9) is already a correction due to
2D effects, we may use the 1D Child-Langmuir velocity
profile y�z� in that term. From the well-known density
profile, r�z� � z22�3, in the 1D Child-Langmuir solution,
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we obtain y�z� � J�r�z� � Cz2�3 for some constant C.
Using this 1D velocity profile in Eq. (9), we obtain

J�2�
J�1�

� 1 1
D

pW
, (10)

which is in remarkable agreement with the empirical for-
mula [Eq. (2)].

While Eq. (10) is derived under the assumption
W�D ¿ 1, the simulation data [6] show that it happens
to be applicable even if W�D is as small as 0.1.

It is therefore tempting to apply the same derivation to
other geometries of emission. Before we do this, let us
recapitulate the main assumptions used to derive Eq. (10):
(a) W�D ¿ 1; (b) r�x, z� � r�z�; (c) the image charge
factor, G, in Eqs. (7) and (8), is the same whether W is
finite or infinite; and (d) the 1D Child-Langmuir solution
is used to approximate the correction due to 2D effects.

For the case where electron emission is restricted to a
circular patch of radius R on the cathode, we may use
exactly the same procedure to arrive at the following 2D
Child-Langmuir law in the limit R�D ¿ 1:

J�2�
J�1�

� 1 1
D

4R
. (11)

Note the similarity between Eqs. (10) and (11). From
the excellent agreement between Eq. (10) and Eq. (2), it
would not be surprising if Eq. (11) happens to give an ex-
cellent approximation for R�D , 1. Indeed, Luginsland
[7] recently confirmed that Eq. (11) agrees with simulation
data to within a few percent whenever R�D . 0.5.

The simple scaling laws, Eqs. (10) and (11), allow us
to postulate the maximum current density, J�3�, when the
emitting area on the planar cathode is an ellipse with semi-
axes R and W�2, with the restriction R . W�2. This el-
lipse reduces to a circle of radius R in the R � W�2 limit,
and to an infinite strip of width W in the R ¿ W limit.
Thus, we postulate
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2

,

(12)

so that Eq. (12) reduces to Eq. (10) in the R ¿ W limit,
and to Eq. (11) in the R � W�2 limit. In Eq. (12), we
use J�3� to denote the limiting current density because to
simulate emission from an elliptical patch into a planar
gap would have required a three-dimensional particle-in-
cell code.

The scaling laws derived thus far predict the emission
current density for the onset of the virtual cathode, which
occurs at the center region of the emission area. If the
available electrons are further increased (e.g., by raising
the laser intensity in a photocathode [8]), a point may
be reached where the entire emitting area may become
space-charge-limited and the electron emission becomes
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saturated. This latter situation was recently analyzed in
Refs. [5,9], and it was found that the current density peaks
at the rim of the emitting region (i.e., the current density
profile has a “winglike” structure). The most recent pho-
tocathode experiments [8] seem to have confirmed both
the onset of virtual cathode and the saturated emission as
the laser intensity is raised, in a manner described in this
paragraph.

While Eqs. (10) and (11) agree well with simulation data
down to relatively small values of W and R, it must be
stressed that they do not give the correct limits when W
and R approach zero. One can prove that, as W approaches
zero, J�2��J�1� , A�D�W�a for some constants A and a
with a , 1. One can similarly prove that, as R approaches
zero, J�2��J�1� , B�D�R�b for some constants B and b
with b , 2. It would be highly desirable to establish the
asymptotic limits of J�2��J�1� as W and R approach zero.

In conclusion, a simple 2D Child-Langmuir law is es-
tablished analytically for the first time. It is in excellent
agreement with numerical simulations. It predicts the onset
of virtual cathode before the entire emitting region reaches
saturation. The simple scaling laws are established from
first principles. They are independent of the cathode ma-
terials, as in the 1D case.
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