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We study noise-related properties of current in adiabatic pumps. A symmetry of the problem allows
us to relate the statistics of charge transport in the case of one-channel leads to the geometry of loops on
a sphere (for many channels on a higher-dimensional manifold). This provides a unifying framework,
which simplifies analysis of transport in various realizations of pumps. For each pumping cycle, the
average current and its minimal variance are given by the areas enclosed by the corresponding loop on
the sphere and on a minimal surface (soap film) spanned by this loop. We formulate conditions for
quantization of the pumped charge.
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Adiabatic charge pumping has attracted considerable at-
tention recently [1], largely motivated by the experiment
of Switkes et al. [2]. A cyclic modulation of gate poten-
tials can produce a dc current through an open system. In
contrast to pumps in the Coulomb-blockade regime [3,4],
pumping through open systems is governed by quantum
effects. Analysis of the transport noise properties, which
probe fundamental features of these Fermi systems, is im-
portant for potential applications.

In a system coupled to reservoirs, the excitation gap van-
ishes violating the true adiabaticity [5]. Still a compact de-
scription, in terms of a scattering matrix S�t�, is possible
if the driving fields change weakly on the scattering time
scale. Under this condition, the average current is a geo-
metric property of the loop traversed by S�t� in the unitary
group [6]. Recently, mesoscopic fluctuations [7–10], the
role of discrete symmetries [8,11], and charge quantization
[7,8,12,13] were studied.

The full description of the noise requires the knowledge
of the counting statistics. The probability P�Q� of pump-
ing the charge Q per cycle can be formally expressed via
the determinant of an integral operator involving S�t� [14].
While compact expressions were found for some pumping
cycles [14–16], a general case requires further analysis.

Let us begin by sketching our main results (valid also in
the presence of a voltage bias, which can be gauged away
at the expense of a phase of the scattering matrix). Con-
sider a system with two M-channel leads. We show that
pumping cycles S�t� [ U�2M� induce identical statistics
P�Q� if they differ only by separate rescattering of the
left and right outgoing states. Thus, instead of loops in
U�2M�, we can study loops N�t� � Sys3S in a smaller,
coset space U�2M��U�M� 3 U�M�. In the single-
channel case, N�t� � ns reduces to a loop C � �n�t��
on the unit sphere in 3D (see Fig. 1). We find that at low
temperature the average pumped charge [17] is given by
the area enclosed by C on the sphere (cf. Ref. [18]; we
set the elementary charge e � 1),
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�Q� � Asphere�4p , (1)

which is defined modulo 1. A way of fixing the integer
part of �Q� is discussed below.

If the loop n�t� [but not necessarily S�t�] is small, the
pumped charge is quantized. Indeed, in Refs. [8,13] quan-
tization was found under these conditions.

The current noise can also be expressed in geometric
terms, namely, as an integral over the time disk defined as
follows: For driving at frequency v we replace the time
axis by a unit circle Ct : w � eivt . The mapping n�w�
from Ct onto the sphere has a unique harmonic �Dn � 0�
extension into the disk Dt . In these terms, the noise is
given by

��Q2�� �
1

8p

Z
Dt

�≠in�2 d2x, w � x1 1 ix2 . (2)

For a given contour C , the details of its traversal in time are
determined by the shape of the driving pulse. Unlike the
average charge (1), the dispersion (2) is sensitive to these
details. Pulse shapes minimizing the noise were found in
several cases [14,16]. Here we solve the problem of noise
optimization for an arbitrary cycle. Specifically, we show
that the minimal noise value [17] is the area of the minimal
surface (soap film) spanned by C (see Fig. 1):

FIG. 1. A pumping cycle S�t� defines a contour N�t� in the
coset space, which determines the statistics. The areas enclosed
by N�t� in the coset space, Asphere, and on the minimal surface,
Amin, define the average current and the noise.
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��Q2��min � Amin�4p . (3)

It is reached in a cycle for which the mapping n�w� is
conformal, �≠wn�2 � 0. Similar results hold in the many-
channel case (see below).

Invariance.—We show that the statistics are invariant
under a local symmetry group and are determined by the
path in the corresponding coset space. Namely, the trans-
formation

S�t� ! U�t�S�t�, U�t� �

µ
UL�t� 0

0 UR�t�

∂
(4)

just shifts the distribution P�Q� by an integer, the relative
winding number of the overall phases of UL, UR :

P�Q� ! P�Q 2 W�, W �
1

8pi

I
Tr�dU Uys3� ,

(5)

where s3 � diag�1M , 21M �. In particular, P�Q� is invari-
ant if the loop is trivial, W � 0.

Physically, multiplication of the scattering matrix (4)
by U�t� just redistributes the scattered particles between
the left channels �UL� and between the right channels
�UR�, without affecting correlations at the scattering cen-
ter. The outgoing states acquire an extra time-dependent
phase which changes the time these particles need to
reach the reservoirs. As a result, the extra charge Wa �H

Tr�dUy
a Ua��4pi is transferred to the lead a � L or

R, and we get (5). For periodic U�t� these numbers are
integers. (Note that no net charge accumulation near the
scatterer implies WL � 2WR .)

Formally, the rule (5) for �Q� follows from Eq. (9) below
[6]. For higher cumulants, we use the result [14,16] for the
generating function x�l� �

P
Q P�Q�eilQ,

x�l� � det�1 1 nF�t0, t� 	Sy
2l�t�Sl�t� 2 1
� . (6)

Here Sl�t� � e2ils3�4S�t�eils3�4 and nF �t0, t� � i�
	2p�t0 2 t 1 i0�
 is the Fourier transform of the Fermi
distribution. In Ref. [16], by separating phases and
amplitudes of S�t�, this result was presented in a form,
implying the rule (5). Indeed, the determinant in Eq. (5)
of Ref. [16] is invariant under (4) and the quantity N̂ in
the prefactor is shifted by W .

To express x�l� via N, we notice that S
y
2lSl �

eils3�4Sye2ils3�2Seils3�4 � eils3�4e2ilSys3S�2eils3�4.
Using the identity e2ilN�2 � cosl

2 2 i sin l

2 N, we get

x�l� � det�1 2
1
2 nF�t0, t� �eils3 2 1�s3	N�t� 2 s3
� .

(7)

At T � 0, multiplying by 1 1 nF�e2ils3�2 2 1�, we
obtain

x�l� � det	1 1 nF�t0, t� �e2ilN�t��2 2 1�
 . (8)

Further, the result (8) is explicitly invariant under global
rotations N�t� ! VyN�t�V [corresponding to transforma-
tions [19] S�t� ! S�t�V ].

Equations (6)–(8) involve N, but not S, and, hence, can
define P�Q� only up to an integer offset. Indeed, the infi-
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nite product of the eigenvalues of these integral operators
can be regularized in many ways [15]. Notice that, for
the operator (8), due to strong degeneracy, one can choose
eigenstates each spanning a narrow frequency range, of or-
der v. For those far above the Fermi level �nF � 0� the
eigenvalues are 1. Deep in the Fermi sea �nF � 1�, the
eigenvalues appear in pairs e6il�2 with product 1. Though
regularization procedures can pair them in different ways,
this can change x�l� only by an even power of e6il�2,
which gives an integer shift of Q.

Pumped charge.—The regularization of the expression
for �Q� � ≠lx�l � 0� requires the knowledge of the full
S�t� and gives an integral over the period C � �S�t�� [6],

�Q� �
1

4pi

I
C

Tr�s3 dS Sy� . (9)

The loop C can be shrunk to a point, uniquely up to con-
tinuous deformations. In the process it spans a surface
D. (For a two-parametric pump [6] D can be constructed
by shrinking the contour in the parameter plane.) Using
Stokes’ theorem, we rewrite (9) as a surface integral, which
further reduces to the “area” of the corresponding surface
D in the coset space,

�Q� �
Z

D

Tr�s3 dS ^ dSy�
4pi

�
Z
D

Tr�N dN ^ dN�
16pi

.

(10)

Note that the integrand is the curvature of the fiber bundle
S ! N � Sys3S. In the single-channel case N � ns ,
and we obtain (1):

�Q� �
1

8p

Z
D

eijkni dnj ^ dnk . (11)

One can try to define the “integral part” Qint of �Q�
as follows: Let us parametrize scattering matrices as
S � US0	N
 with a matrix S0, defined for any N, and a
matrix U as in Eq. (4), and assign to each cycle S�t� the
winding number of the corresponding U�t�. This attempt
fails, since there is no continuous global map S0	N
. In
fact, any two loops in U�2M� can be deformed into each
other, i.e., any Qint is discontinuous under certain contour
deformations. However, continuous maps S0	N
 do
exist for contractible regions, and one can introduce Qint

for contours S�t�, for which N�t� does not leave such a re-
gion. Examples are regions of matrices S without perfectly
transmitting (or reflecting) channels. In particular, the
integer N̂ introduced in Ref. [16] changes abruptly when
the pumping cycle contains a scattering matrix S�t� with
a perfectly transmitting channel.

At this point, we formulate sufficient conditions for the
quantization of the pumped charge: The fractional part of
�Q� vanishes for small contours N�t� in the coset space. An
example: The minimal and maximal conductance, g � 0
and g � M, is achieved at the points N � 6s3. Hence,
keeping g close to one of these values throughout the cycle
guarantees the quantization. Evaluating the integral (10)
276803-2
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for such cycles, we estimate the accuracy of quantization
as dQ & g for g � 0, and dQ & M 2 g for g � M.

In the particular case of a single channel, M � 1, the
scattering matrix can be parametrized by the conductance
g and three phases:

S�g, a, b, w� � eiw�2

√p
1 2 g eia i

p
g eib

i
p

g e2ib p
1 2 g e2ia

!
.

(12)

The components of the unit vector n then are

nz � 1 2 2g; nx 1 iny � 22i
q

g�1 2 g� ei�a2b�.
(13)

Using these expressions we can explain the charge quanti-
zation found, for instance, in Refs. [8,13]: For the pump-
ing cycles studied, the system encircled the resonance point
g � 1 in the parameter plane at a sufficient distance from
it so that g � 0 throughout the cycle. The corresponding
loop n�t� encircled the north pole (g � 0; Fig. 2). Since
the interior of the loop in the parameter plane contained the
resonance point, the surface D in (11) covered the lower
part of the sphere, i.e., almost the whole sphere, �Q� � 1.

Noise optimization.—For the noise, given by the l2

term in the Taylor series of lnx�l�, we obtain a double
integral [14,16] over the unit circles w � eivt, w0 � eivt0 :

��Q2�� �
1

32p2

I I dw dw 0

�w 2 w0�2 Tr�	N�t� 2 N�t0�
2� .

(14)

It can be compactly written in terms of the Fourier series
N�t� �

P
k$0 Nk exp�ikvt� 1 H.c.:

��Q2�� �
1
4

X
k.0

k Tr	Ny
k Nk
 . (15)

Furthermore, the mapping,

w ! N�w� �
X
k$0

Nkwk 1 H.c. , (16)

which is the (unique) harmonic extension of the mapping
t ! N�t� from the circle into the disk Dt : jwj , 1, allows

FIG. 2. Several pumping cycles n�t�: Sb [21] and Sa [16]
lead to the same counting statistics, which at g � 1�2 coincide
with that for Sg [16]. The sketched contour S0 [8,13] describes
pumping of a unit charge per cycle.
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us to express the noise as the integral over Dt :

��Q2�� �
1

16p

Z
Dt

d2x Tr	�≠iN�2
, w � x1 1 ix2 ,

(17)

which reduces to (2) in the single-channel case. Note that
the integral (17) is well defined for any surface. Among the
maps N�w� with the fixed value N�t� at the boundary the
minimum is achieved for the harmonic surface (16).

Now we turn to optimization of pumping: The cyclic
evolution of S�t� is achieved by periodic changes in ex-
ternal parameters that control the scattering or the bias.
For a fixed trajectory in the parameter space, varying the
rate of motion does not affect the average pumped charge
(9), (11) but does influence the noise. The noise (17) is
bounded from below by the area of the surface N�w� [de-
fined by the scalar product �A, B� � Tr�AyB��2]:

��Q2�� $ A	N�w�
�4p . (18)

Indeed, area spanned by ≠1N and ≠2N in the matrix space
#

1
2 �j≠1Nj2 1 j≠2Nj2� �

1
4 Tr	�≠iN�2
. The equality is

achieved only if ≠iN are orthogonal and have the same
length, or, equivalently, Tr	�≠wN�2
 � 0. This condition
defines conformal mappings N�w�.

The minimal noise value is given by the minimal area
(3) of a surface spanned by the loop N�t�, since both
sides of Eq. (18) are minimized by a conformal harmonic
surface [20]. Such a mapping also provides the opti-
mal shape of the pumping pulse. Not surprisingly, the
classes of harmonic and conformal maps are preserved by
the SL2��� time-reparametrization symmetry [15], w !

�w 1 a���1 1 āw�. For N cycles NN �w� � N1�wN � and
N1	

QN
i�1�w 1 ai���1 1 āiw�
 give the same statistics.

Applications.—Our findings give a new perspective on
the analysis of pumping cycles discussed in the literature.
Consider the cycles

Sb�t� � e2if�t�s3�2S�0�eif�t�s3�2, (19)
Df � 2pN .

Sa�t� � eif�t�s3�2S�0�eif�t�s3�2, (20)

The first of them, studied extensively by Levitov et al.
[14,21] describes conductors under the voltage bias
2h̄ �f�t��e, as one can see by applying a gauge trans-
formation. The cycle Sa was discussed in Ref. [16].
These cycles differ only by a transformation (4) with
U�t� � eif�t�s3, hence, the statistics coincide up to a shift
by the winding number: Pb�Q 2 N� � Pa�Q�. Indeed,
the same pulse shape f�t� � vt [and others, generated
by SL2���] was found optimal for both cycles. The
statistics for this optimal cycle Sa�t� are related to the
well-known binomial distribution for a conductor under a
constant positive [22] bias by P

opt
b �N 2 Q� � P

opt
a �Q�,

in agreement with Ref. [16]. For a single channel, the
vector n�t� follows a line of constant latitude for both Sb

and Sa: b�t� 2 b�0� � f�t� or a�0� 2 a�t� � f�t�.
The pumped charge �Q� is given by the area above this
line, g, for (19), and below this line, 1 2 g, for (20).
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The minimal noise value (3) is the area g�1 2 g� of the
sphere’s cross section.

The rotational invariance of x�l� implies that the count-
ing statistics for any circle n�t� is the same as for biased
conductors. In particular, the optimal pumping uniformly
traverses the circle and gives rise to a binomial distribu-
tion. As an example, consider the cycle

Sg�t� �

µ
cosh�t� sinh�t�
sinh�t� 2 cosh�t�

∂
, Dh � 2p , (21)

during which the conductance g � sin2h�t� oscillates.
We find that �Q� � 0 and n�t� traverses twice the
meridian in Fig. 2. Thus, P�Q� coincides with the dis-
tribution for the equator, Sb at g � 1�2, and the pulse
h�t� � vt from Ref. [16] is optimal. For this pulse P�Q�
is the shifted binomial distribution for N � 2 cycles,
P

opt
g �Q� � P

opt
b �Q 1 1� jg�1�2

N�2 �
1
4 � 2

Q11 �, in agreement
with Ref. [16].

Our geometric approach allows us to obtain rela-
tions between current and noise for broad classes of
pumping cycles. For small loops n�t�, the minimal
surface lies on the sphere and the analysis simplifies.
If the loop S�t� is also small, the system is in the
weak-pumping regime with �Q�, ��Q2�� ø 1, and for a
general (possibly self-intersecting) loop we have j�Q�j �
jA1 2 A2j�4p # ��Q2��min � �A1 1 A2��4p, where
A6 are the contributions to the enclosed area with positive
(respectively, negative) orientations. The weak-pumping
regime was studied very recently by Levitov [19]. He
found that the transport is described by two uncorrelated
Poisson processes, which transport charge to the right
and to the left and in some cases reduce to a single
process. Our inequality ��Q2�� $ j�Q�j is in agreement
with these findings, A6�4p being the rates of the two
Poisson processes for an optimal cycle. The equality,
the criterion for the reduction to a single Poisson process
in the weak-pumping regime, is thus reached only for
optimally traversed loops enclosing the area of a constant
orientation (in particular, for non-self-intersecting loops).
The example of such a cycle considered in Ref. [19]
corresponds in our terms to n�t� traversing uniformly a
small circle. Generally, for weak harmonic driving n�t�
encircles an ellipse. The optimal pulse shape, given by the
conformal map of Dt onto this ellipse, involves elliptic
integrals [23]. Further, for a general small polygon the
optimal pumping is given by the Schwarz-Christoffel
formula, describing a map of Dt onto its interior (also
reducing to elliptic integrals for a rectangle) [23].

The results for the weak-pumping regime can be gener-
alized to the many-channel case. Using local complex co-
ordinates in the coset space, we find that ��Q2���j�Q�j $ 1,
the equality (corresponding to a single Poisson process)
being reached only for optimal cycles with a complex
analytic (or antianalytic) minimal surface N�w�.

For the strong-pumping regime our description also
gives new results. For instance, in the interesting case
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of a single channel and a contour n�t� without self-
intersection, we find that ��Q2��min # distance from �Q�
to closest integer.

In conclusion, we have linked the counting statistics of
charge pumping through an open (possibly voltage-biased)
system to geometric properties of a loop on the sphere (or
on its generalization in the many-channel case), induced
by periodic variation of the scattering matrix. The average
pumped charge and its minimal variance for an arbitrary
pumping cycle are given by the area encircled by this loop
on the sphere and the area of the minimal surface spanned
by this loop, respectively. We have also found the shape
of the driving pulse that optimizes the noise. Our results
represent a unifying framework for analysis of transport
statistics in various realizations of pumping.
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