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Quantized Adiabatic Charge Transport in a Carbon Nanotube
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The coupling of a semimetallic carbon nanotube to a surface acoustic wave (SAW) is proposed as a
vehicle to realize quantized adiabatic charge transport. We demonstrate that electron backscattering from
a periodic SAW potential can be used to induce a miniband spectrum at energies near the Fermi level.
Within the framework of Luttinger liquid theory, electron interaction is shown to enhance minigaps and
thereby improve current quantization.
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The mechanism of quantized adiabatic transport, as first
conceived by Thouless [1], involves a one-dimensional
(1D) electron system subject to a periodic potential. If the
potential varies slowly and periodically in time so that the
Fermi level lies within a (perturbation induced) minigap
of the instantaneous Hamiltonian, then an integer charge
me is transported across the system during a single period.
This results in a quantized current j � mef, where f is
the frequency of the external field. If realized experimen-
tally, such a device would present an important application
as a current standard.

Electron properties of real 1D conductors, such as nano-
tubes or quantum wires, are dominated by electron inter-
actions [2–6]. However, leaving aside general statements
[7] about robustness of the quantization, the effect of in-
teractions on quantized transport has not been explored.
By investigating a theory of the interacting 1D system, the
aim of this Letter is to establish the possibility to real-
ize the regime of quantized adiabatic transport in metal-
lic nanotubes, the purest 1D conductor [8–10] currently
available.

Although the mechanism of quantized adiabatic trans-
port is compelling in its simplicity, it has proven difficult to
realize experimentally: its successful execution demands
the fabrication of a host 1D system coupled to a sliding ex-
ternal perturbation to engineer a miniband spectrum with
minigaps sufficiently large, so that disorder, thermal exci-
tations, and finite size effects do not compromise the in-
tegrity of the quantization. Among existing 1D systems,
one possibility is to use quantum wires coupled to a surface
acoustic wave (SAW). The SAW field can be made strong
enough to induce a gap, and the SAW wave number can be
chosen to match 2pF to pin electrons. However, since the
densities for which adiabatic transport is most pronounced
correspond to a few electrons per SAW spatial period (re-
alistically, ca. a few microns), one would need wires with
low electron 1D density of around 104 cm21. The densities
currently available in such systems are at least an order of
magnitude higher [11]. These difficulties have stimulated
work on alternative mechanisms of current quantization
[12] in GaAs split gate devices.
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In this Letter we argue that a SAW coupled to a semi-
metallic carbon nanotube presents an ideal system in which
quantized transport can be realized. The experimental ar-
rangement is depicted in Fig. 1. A nanotube is placed
between two metallic contacts on the surface of a piezo-
electric crystal with a gate electrode nearby to allow ad-
justment of the Fermi level in the tube. In a piezoelectric
substrate the SAW is accompanied by a wave of electro-
static potential that can have an amplitude of up to a few
volts [13]. The potential decays both into the free space
and substrate to a depth comparable with the wavelength
lSAW. We assume that the tube is suspended at a height
ølSAW above the substrate, so that there is no direct me-
chanical coupling and only the free space component of
the SAW potential matters. When a SAW is launched from
a transducer (such as an interdigitated electrode array) its
electric field penetrates the tube and electron diffraction on
the sliding SAW potential results in miniband formation.
By positioning the Fermi level within the energy gap, the
conditions for current quantization are fulfilled.

The high electron velocity (y � 8 3 107 cm�s) in
nanotubes makes it possible to obtain large minigaps. For
a SAW-induced grating of period 200 300 nm, a crude
estimate suggests minigap size hy�lSAW � 10 meV.
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FIG. 1. The low energy spectrum of a metallic carbon nano-
tube (broken line) acquires a minigap (solid line) in the presence
of a symmetry breaking perturbation. The backscattering transi-
tions induced by the SAW potential are shown. Inset: proposed
experimental arrangement consisting of a nanotube suspended
between contacts, with a gate to the side, and a SAW source.
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For comparison, the same periodic perturbation acting
on a GaAs 1D channel with y � 107 cm�s will induce
minigaps of an order of magnitude smaller. This figure
can also be compared with a single-particle level spac-
ing of hy�L � 0.6 meV expected for a tube of length
L � 3 mm (and clearly resolved in experiment [8,9]). A
further advantage of the nanotube over the GaAs system
derives from the spectrum: the semimetallic nanotube
system consists of two pairs of oppositely moving spin
degenerate states that intersect exactly at the Fermi level
(at half filling). Thus, despite the fact that the SAW
wavelength is always much larger than the lattice constant
a, minigaps will open close to the Fermi level (Fig. 1).
Moreover, a minute doping or gating is sufficient to align
the chemical potential with one of the minigaps.

Electron states in semimetallic nanotubes are described
by a 1D Dirac equation rather than a Schrödinger equa-
tion. Below, it is shown that a selection rule protects the
integrity of the Dirac band structure against backscattering
due to a potential perturbation. Therefore, in the arrange-
ment shown in Fig. 1, the SAW will not couple to elec-
trons at all. In order to realize adiabatic charge transport,
backscattering must be restored by applying an external
perturbation that lowers the symmetry of the Dirac system
(by mixing left and right states). This can be achieved
by applying a magnetic field [14] along the nanotube axis.
Also, in the majority of nominally metallic nanotubes such
as the so-called “chiral” or “zigzag” nanotubes, a matrix
element mixing left and right states appears [15] due to the
curvature of the 2D carbon sheet rolled into a tube. Both
effects open a minigap at the band center, as confirmed ex-
perimentally [16,17]. Below, we explore the influence of
a SAW potential on the spectrum of the nanotube system
within the framework of a free electron model [18] and,
later, within the Luttinger liquid theory [2,3].

The long-range electron interaction in the spin- and
valley-degenerate modes is symmetric with respect to the
four “flavors.” In the Luttinger liquid theory of nano-
tubes [2,3] this interaction is described by the forward
scattering amplitude V �q� with a form that depends on
the electrostatic environment. In the absence of screen-
ing, V0�q� � e2 ln��qd�22 1 1�, where d is the nanotube
diameter. Accounting for the substrate dielectric constant
e, V �q� � 2V0�q���e 1 1�. Since the ratio N � d�a is
large (typically N � 10), backscattering and umklapp in-
teractions are small scaling as 1�N [3]. Furthermore, the
umklapp vertex also happens to be small numerically [19].

Therefore, taking into account the presence of a symme-
try breaking perturbation D, and neglecting both backscat-
tering and umklapp processes, the low energy states of
the nanotube system (in the vicinity of the band crossing,
p � 6k0) are described by the Dirac Hamiltonian

H �
Z

dx
4X

a�1

c̄a�2h̄ys2≠x 1 D�ca

1
1
2

X
q

brqV �q�br2q , (1)
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where c̄ � cys1. Here Pauli matrices s1,2 operate in
the two-component Dirac operator space ca � �cr,cl�a ,
with pseudospin components corresponding to the
right/left moving states, and br�x� �

P
a cy

a�x�ca �x�
represents the charge density operator. The second term in
(1) describes the left/right mixing and yields a gap in the
spectrum. Different mixing mechanisms lead to different
values of D. For example, a parallel magnetic field [14]
produces D � h̄yf�R, where R is the nanotube radius
and f � F�F0 is the magnetic flux through the nanotube
cross section (measured in units of the flux quantum
F0 � hc�e).

The harmonically varying electrostatic potential of the
SAW decays exponentially in the direction normal to the
surface: Ae2kz sink�x 2 ut�, where u is the SAW veloc-
ity. Since the wavelength lSAW � 2p�k is much larger
than the tube diameter 2R, one can ignore the potential
variation e2kz over the tube cross section. Indeed, for
lSAW � 1 mm and R � 1 nm, the potential variation is
less than 1%. The SAW velocity is small, u ø y, and
the 1D energy spectrum can therefore be obtained within
a stationary approximation.

To simplify our analysis, let us first consider the non-
interacting system. In the stationary approximation, the
single-particle spectrum of each degenerate flavor can be
obtained from the perturbed 1D Dirac system,

ec�x� � �2ih̄y≠xs3 1 Ds1 1 A sinkx�c�x� . (2)

Here the selection rule described earlier is manifest: for
D � 0, Eq. (2) separates into two independent equations
for right and left moving particles. The SAW affects only
the phase of the wave function. For D fi 0, the backscat-
tering effect of the SAW potential is restored, and mini-
gaps are induced in the spectrum. To explore the miniband
structure it is convenient to implement a gauge transforma-
tion, c�x� � e

i

2
s3l coskx

c 0�x�, where l � 2A�h̄ky, and

ec 0�x� � �2ih̄ys3≠x 1 De2ils3 coskxs1�c 0�x� . (3)

The periodic system is characterized by Bloch states
cp�x� � up�x�eipx with quasimomentum p taking val-
ues in the Brillouin zone defined by the SAW period,
2k�2 , p , k�2. The corresponding energy spectrum
can be easily obtained numerically (Fig. 2) by integrating
the system of first-order differential equations (3) over
the SAW spatial period, 0 , x , 2p�k. The spectrum
has an electron-hole symmetry, e ! 2e, characteristic
of a Dirac system. Equation (3) can also be solved
analytically for D ø h̄ky by treating the second term as
a perturbation [20]. Separated into Fourier components,

e2il coskx �
X̀

m�2`

�2i�mJm�l�e2imkx, (4)

where Jm�l� are Bessel functions, each harmonic of the
perturbation (4) mixes right and left modes with p 2 p0 �
mk. When these states are in resonance (i.e., when p �
2p0 � mk�2, e0

m � mky�2� , the spectrum can be found
by standard two-wave matching. This gives energy gaps
276802-2
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FIG. 2. Electron energy spectrum of Eq. (2) vs the SAW field
strength A, scaled by e0 � h̄ky. The backscattering perturba-
tion value D � 0.4e0 was used. Minigaps oscillate as a function
of A, in agreement with the perturbation theory (5), vanishing
at values close but generally not equal, to the roots of Bessel
functions.

Dm � 2DjJm�2A�h̄ky�j , (5)

which are oscillatory functions of the SAW amplitude A,
with zeros at the nodes of Bessel functions. In particular,
Dm � 2D�A�h̄ky�jmj�jmj! for A ø h̄ky.

Electrons in the half-filled (undoped) system represent
a solid state analog of the Dirac vacuum: under the SAW
perturbation, the many-body state carries neither charge
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nor current. For a weak SAW potential, this follows from
adiabatic continuity: quantized transport takes place when
the chemical potential m falls in one of the minigaps. The
value of the quantized current will remain the same [1]
within a whole range of values of m and A that stay within
a gap. Since the spectral gap at the band center is adia-
batically connected to the minigap at A � 0 (induced by
the symmetry breaking perturbation D), it is evident that
at half filling the current is zero. Similarly, for m fully oc-
cupied minibands, taking into account the fourfold valley
and spin degeneracy, the electron density (counted from
that at m � 0) is dn � 4mk�2p. This results in a current
j � eudn. Identifying uk�2p with the SAW frequency
f, we obtain the quantized current j � 4mef. The depen-
dence of the energy gaps on A, shown in Fig. 2, describes
the width of the plateaus of quantized current.

To complete our analysis it remains only to explore the
integrity of the current quantization in the presence of elec-
tron interactions. To undertake this program it is conve-
nient to first bosonize the Hamiltonian (1) setting cj�x� ~

exp�i
p

p fj�x��. Introducing the linear combination of
bosonic fields0BB@

F0
F1

F2

F3

1CCA �
1
2

0BB@
1 1 1 1
1 21 1 21
1 21 21 1
1 1 21 21

1CCA
0BB@

f1
f2

f3

f4

1CCA ,

the part of the Hamiltonian (1) without the mass term
Dc̄c is diagonalized. Setting Vext�x� � Vg 1 A sinkx,
where Vg represents the external gate potential, and
K�q� � 1 1 4V �q��p h̄y, the corresponding Lagrangian
L0 �
1
2

X
q

�≠tF0�q�≠tF0�2q� 1 K�q�q2F0�q�F0�2q�� 1
Z

dx

"
1
2

3X
a�1

�≠mFa�2 1
2

p
p h̄y

Vext�x�F0�x�
∏

(6)
describes the dynamics of one charged and three neutral
modes. Restoring the mass term perturbation, the total
Lagrangian is given by L � L0 1 LD, where

LD � 22D
Z

dx
4X

a�1

cos�
p

4p fa� . (7)

Applied to L , a conventional renormalization group ap-
proach demonstrates that the perturbation LD is relevant
and grows. Depending on the density, controlled by Vg,
the resulting state can be gapped with a finite correlation
length, or gapless.

Let us first focus on the influence of electron interactions
on the energy gap at the band center considering the system
at half filling and in the absence of the SAW (i.e, Vext � 0).
Technically, this involves estimating the energy of a soliton
field configuration fj (with any flavor j). A variational
analysis which takes into account the renormalization due
to the three neutral modes obtains

Egap � K1�2E
1�5
0 D4�5, where E0 �

h̄y

d
, (8)

substantially larger than the noninteracting result, D.
Similarly, the SAW-induced minigaps (5) are also en-
hanced by interaction. Considering the regime D ø h̄ky,
this enhancement is most straightforwardly demonstrated
by mapping the SAW-induced gap onto the gap at the band
center. This is achieved by a variable shift,

fj ! fj 2 �
p

p h̄y�21
Z x

0

bK21Vext�x0� dx0, (9)

eliminating the term linear in F0 from (6). [The operator
in (9) is diagonal in Fourier representation, bK � K�q�.]
At the same time, the mass term (7) is transformed as

LD � 2D
Z

dx
4X

f�1

ei�
p

4p fi1el coskx22eVgx� 1 c.c. , (10)

where el � 2A�Kh̄ky, eVg � Vg�Kh̄y, and K �
1 1 8V �k��hy. [Indeed, the shift (9) is nothing but the
bosonization representation of the gauge transformation
used to solve the free fermion Dirac equation (2).] Now,
by analogy with the treatment of Eq. (3) above, one can
expand LD in Fourier components m. The density corre-
sponding to m filled minibands can be chosen by setting
276802-3
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eVg � mk�2. In this case, all terms in the Fourier series

(4) with m fi 2eVg�k give rise to expressions with oscil-
latory spatial dependence. Discarding these nonresonant
terms one arrives at an expression of the form (7) with D

replaced by DJm�el�. Being now formally equivalent to
the problem at half filling considered above, we deduce
that the interaction brings about a renormalization of the
minigap such that

E�m�
gap � K1�2E

1�5
0 jDJm�2A�Kh̄ky�j4�5. (11)

Several features of this result are worth noting: the gen-
eral form of the gap dependence on the SAW amplitude,
with nodes at the roots of Bessel functions, is unaffected
by electron interaction. The magnitude of the minigap is
enhanced by ca. K1�2�E0�D�1�5 as compared to the non-
interacting case. The rescaling of the SAW amplitude A
and of Vg by K, manifest in Eq. (10), describes the effect
of screening due to the 1D electron system. For a sub-
strate dielectric constant e � 12 (appropriate for GaAs)
the screening factor is estimated to be K � 5.

To complete our discussion, let us comment on the fea-
sibility of the experiment (Fig. 1 inset). Maximal values
of the SAW-induced minigaps in Fig. 2 are close to D,
one-half of the value of the central gap. If a longitudi-
nal magnetic field is used to open the central gap, then
for a single-walled nanotube with a diameter 1.6 nm (such
as that grown by Ref. [21]), and a field B � 16 T, one
finds D � 5 meV. Applied to the spectra in Fig. 2 where
D � 0.4e0 (i.e., e0 � 12 meV� , this suggests a SAW
wavelength of lSAW � 0.25 mm. Taking a SAW veloc-
ity u � 3 3 105 cm�s, this corresponds to a frequency
f � 12 GHz resulting in a quantized current of around
8 nA. In order to reach a maximum value of the principal
SAW-induced minigap shown in Fig. 2, the SAW poten-
tial should be around A � 10 meV. This value, obtained
in the single electron approximation, should be corrected
by the factor K � 5 to account for screening. Thus a SAW
potential of around a hundred meV may be required. These
values do not present a problem even when a weak piezo-
electric such as GaAs is used [12]. Moreover, for experi-
ments with nanotubes, a SAW potential in the eV range
can be made available by employing as a substrate a much
stronger piezoelectric such as LiNbO3. A strong piezo-
electricity will also facilitate generation of the high fre-
quency SAW required for the proposed experiment. (In
LiNbO3, SAW frequencies of ca. 17 GHz have been re-
ported [22].) Alternatively, by using a chiral or zigzag
metallic nanotube, where the central gap opens [15] due to
the tube curvature, one can circumvent the need for a mag-
netic field. In this case, a gap is predicted [15] to be in a
range up to 20 meV for a tube diameter of 1.6 nm allowing
SAW-induced minigaps as large as 10 meV to be realized.

To summarize, we have considered a metallic carbon
nanotube in the field of a slowly moving periodic poten-
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tial. If the nanotube is subjected to a further perturbation
that mixes right and left moving states, the coupling be-
tween the electrons and the SAW potential acts as a charge
pump conveying electrons along the tube. An estimate of
the miniband spectrum induced by electron diffraction on
the sliding potential revealed that minigaps of ca. 10 meV
are viable. We therefore conclude that the carbon nano-
tube combined with the SAW provides a promising sys-
tem in which quantized adiabatic charge transport can be
observed. As demonstrated above, the energy gaps that can
be detected experimentally through quantization plateau
widths are sensitive to the character of electron interac-
tions. Thus, quantized transport in this strongly interacting
system can be viewed as a novel probe of Luttinger liquid
physics.
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