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We investigate a system of one-dimensional Hubbard chains of interacting fermions coupled by inter-
chain hopping. Using a generalization of the dynamical mean-field theory we study the deconfinement
transition from a Mott insulator to a metal and the crossover between Luttinger and Fermi liquid phases.
One-particle properties, local spin response, and interchain optical conductivity are calculated. Possible
applications to organic conductors are discussed.
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The nature of the metallic phase of interacting electron
systems depends strongly on dimensionality. In three
dimensions, Fermi liquid (FL) theory applies, whereas
in one dimension a different kind of low-energy fixed
point known as a Luttinger liquid (LL) is found. For
commensurate electron fillings, strong enough repulsive
interactions destroy the metallic state altogether by open-
ing a Mott gap. This phenomenon exists in all dimensions
but the one-dimensional case is particularly favorable
[1]. In quasi-one-dimensional (Q1D) systems, interchain
hopping can induce a (deconfinement) transition from the
Mott insulating (MI) state to a metallic state, and cross-
overs between different metallic behaviors (Fig. 1). These
phenomena play a key role in organic compounds such as
the Bechgaard salts, which are three-dimensional stacks
of quarter-filled chains [2]. Some of their low-temperature
properties are well described by FL theory, whereas opti-
cal [3] and transport measurements [4] have shown that
the high-temperature phase is either a LL or a MI.

Describing Q1D systems is not an easy task. The trans-
verse hopping t� is a relevant perturbation on the LL
[5–7]. Hence, perturbative renormalization group calcula-
tions yield an estimate of the crossover scale [5,8] but fail
below that scale. In the MI state, electrons are confined on
the chains by the Mott gap. A finite critical value of t� is
needed to induce an insulator-to-metal transition. In the
Bechgaard salts, the change in conductivity when increas-
ing pressure or going from the tetramethyltetrathiafulva-
lene to the tetramethyltetraselenafulvalene family may be
[9,10] associated with such a transition. Thus the effects of
the interchain hopping that are the most important physi-
cally cannot be handled reliably by perturbative methods.
Although some nonperturbative studies of deconfinement
have been made for a finite number of chains [11] the case
of an infinite system is still open. Some of the key ques-
tions yet to be answered are: (i) What is the crossover
scale from the LL to MI, or from the LL to FL (Fig. 1), and
is there only one crossover scale for the different physical
properties (transport, spin response, single-particle proper-
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ties, etc.)? (ii) What is the nature of the low-temperature
FL state, and is the shape of the Fermi surface (FS) af-
fected by interactions? Do quasiparticle (QP) properties,
such as the QP residue Z�k�, vary significantly as the wave
vector k moves along the FS?

In order to deal with these questions, a new method has
been proposed [12,13], which generalizes the single site
dynamical mean-field theory (DMFT) [14] and replaces
the Q1D system by a single effective chain from which
electrons can hop to a self-consistent bath. We thus nick-
name it chain-DMFT (ch-DMFT). It is exact in the limit
of decoupled chains, while it reduces to usual DMFT in
the opposite limit of zero hopping along the chains. In
this Letter, the first quantitative solution of the ch-DMFT
equations is presented. We show that the above issues can
be addressed, and some of the above questions answered.
In view of the difficulty of the problem only the Hubbard
model is considered here, but more realistic extensions are
in sight, as discussed below.
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FIG. 1. Schematic phase diagram of a Q1D system, as a func-
tion of temperature T and interchain hopping t�. The Mott insu-
lator (MI), Luttinger liquid (LL), and Fermi liquid (FL) regimes
are displayed. All lines are crossovers, except for the T � 0
transition from a MI to a FL. The MI phase is present only for
commensurate fillings. Possible phases with long-range order
have been omitted.
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Let us consider a system of coupled chains described
by a sum of Hamiltonians of the isolated chains plus a
hopping term between neighboring chains. The ch-DMFT
approximates this system by the effective action:
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ZZ b
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dt dt0
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where Hint
1D is the interacting part of the on-chain Ham-

iltonian. G0 is an effective propagator determined from
a self-consistency condition: the Green’s function G�i 2

j, t 2 t0� � 2	c�i, t�c1� j, t0�
eff calculated from Seff
should coincide with the on-chain Green’s function of the
original problem, with the same self-energy S � G

21
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G21. This reads
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where e��k�� denotes the Fourier transform of the
interchain hopping tmm0

� , D�e�� �
P

k� d�e� 2 e��k���
denotes the corresponding density of states, k denotes
the momentum in chain direction, and vn denotes the
Matsubara frequencies. The ch-DMFT equations (1),(2)
fully determine the self-energy and Green’s function of
the coupled chains G�k, k�, ivn�21 � ivn 1 m 2 ek 2

e��k�� 2 S�k, ivn�. The ch-DMFT approach can be rig-
orously justified in the formal limit where the lattice con-
nectivity in the transverse direction is taken to infinity. In
systems with finite transverse connectivity it can be viewed
as an approximation neglecting the dependence of the self-
energy on transverse momentum, keeping both frequency
and in-chain momentum dependence: S � S�k, ivn�. In
our numerical calculations we adopt this latter point of
view and consider a two-dimensional array of chains
forming a square lattice with nearest neighbor hopping, so
that e��k�� � 22t� cosk�. We specialize to the Hubbard
model, i.e., for each chain,

H1D � 2t
X
is

�c1
isci11s 1 H.c.� 1 U

X
i

ni"ni# . (3)

We solve the effective chain problem for chains of 16
or 32 sites with periodic boundary conditions using the
quantum Monte Carlo Hirsch-Fye algorithm [15]. Using
32 time slices in imaginary time allows us to reliably ac-
cess temperatures down to T�W � 0.02 with U�W � 1,
where W � 4t is the bandwidth of the one-dimensional
chain. Typically, about 5000 QMC sweeps and 10 to
15 ch-DMFT iterations are sufficient to reach convergence.
The main quantities that we calculate and analyze are
(a) on-chain (i.e., summed over k�) single particle Green’s
functions: G�k, ivn�, and self-energies S�k, ivn� (ob-
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tained from G
21
0 2 G21 [16]). This allows us to identify

the location of the FS kF
��k� by solving e��kF

�� � m 2

ReS�k, ivn�1� 2 ek and the QP residue Z � Z�kF
�� by

fitting the slope �� 1 2 Z21� of S vs ivn at a specific
FS point. (b) On-chain spin and charge response functions,
in particular, the local spin response function: xs�t� �
	Sz� j, 0�Sz � j, t�
 �

P
k,k� xs�k, k�, t�. Indeed, in a LL

(or with Kr � 1 in a FL) we have xs�t� � xs�b�2� 3

�sinpt�b�2�11Kr� in the asymptotic regime where b, t are
larger than some coherence scale. By fitting our results to
this form, we can define an effective Kr . Furthermore, the
temperature dependence of xs�b�2� is related to the NMR
relaxation rate 1�T1 � limv!0x 00

s �v��v. In a FL liquid
at low-enough temperature [17], 1�T1 � bxs�b�2��2p2.
In a LL 1�T1 and bxs�b�2� have the same T dependence
(albeit with a proportionality factor depending on Kr).
(c) Interchain optical conductivity. Within ch-DMFT
vertex corrections drop out [13] and the conductivity is
given by
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t2
�
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Z dk�
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Note that we have taken into account the k� dependence
of the current vertex in (4). In practice, we perform ana-
lytically the k� integration in (4) and numerically the k
integration and Matsubara summation. We then use the
maximum entropy algorithm [18] to continue s��iv� to
the real axis and obtain the interchain optical conductivity
Res��v, T�.

We first discuss our results away from half filling, for
U�W � 1 and m � 0.2 (corresponding to a total density
n � 0.8). The numerical method was tested for decoupled
chains �t� � 0�, for which our fitting procedure of xs

yields Kr � 0.7, in agreement with the exact result [19].
We then study how interchain coherence develops as tem-
perature is lowered for coupled chains with t��W � 0.14.
Figure 2 displays the effective Kr as a function of tem-
perature: a crossover from a LL (with Kr � 0.7) to a
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FIG. 2. Effective Kr vs temperature in the doped case (filling
n � 0.8) for U�W � 1.0, t��W � 0.14.
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TABLE I. QP weights Z�k�� for different points on the FS
(doped case: n � 0.8, U�W � 1.0, t��W � 0.14).

k��p 0.19 0.36 0.50 0.62 0.74 0.91

Z�k�� 0.62 0.65 0.69 0.72 0.75 0.78

FL (Kr � 1) is seen as temperature is lowered below
T ��W � 1�44. According to [5,8], the crossover scale
is given by T � �

t�

p C�t��t�u��12u�, with u � �Kr 1
1�Kr��4 2 1�2 (� 0.03 here). The interactions reduce
its value compared to the naive one t��p. We cannot test
this renormalization effect because of the small values of
u in the Hubbard model. Our results are consistent with
T � � Ct��p with C � 0.5. In the low temperature FL
regime, we find that the location of the FS is essentially
unaffected by interactions. The QP residue Z is not uni-
form along the FS. Its dependence on kF

� is displayed in
Table I. Z is larger for k� close to p, while it is somewhat
smaller for small k�. This is not a big effect however,
and it would be inappropriate to speak of “hot spots” [20]
(even though it may suggest that such a phenomenon ap-
pears for larger U). Note that, in agreement with Arrigoni
[12], we find that Z is more uniform along the FS than
suggested by the single-chain approximation S � S1D
used by many authors. We now turn to the commensurate
(half-filled) case and present results for U � 0.65W .
By fitting the self-energy to an analytical form, we first
checked that our numerical results are consistent with a MI
state with a gap D1D�W � 0.1, in agreement with exact
results. Turning on t�, we estimate the t� dependence of
the gap by performing simulations at one of the lowest ac-
cessible temperatures T�W � 1�40. The gap vanishes for
t��W � 0.07. Hence our method captures the insulator-
to-metal transition induced by transverse hopping. The
effective Kr , shown in Table II, is also a clear indicator of
the MI (Kr � 0) to FL (Kr � 1) transition, in agreement
with the qualitative expectations of Fig. 1. At this low
temperature, the intermediate LL regime is too narrow to
be visible. The location of the transition is in reasonable
agreement with the naive criterion D1D � t�

� [9–11].
Figure 3 displays the interchain optical conductivity for
several values of t�. In the MI phase, s��v� shows a gap,
followed by an onset of absorption starting at approxi-
mately the gap and extending up to a scale of order U,
where a broad second peak is apparent. A low-frequency
Drude peak develops as the insulator-to-metal transition
is crossed. Close to the transition, the weight in the
Drude peak is small, while the Hubbard band feature is
still visible and carries a significant part of the spectral
weight. The results for the NMR relaxation rate 1�T1 are

TABLE II. Effective Kr at half filling, as a function of t��W
for U�W � 0.65 and T�W � 1�40.

t��W 0.00 0.04 0.07 0.11 0.14 0.16 0.18

Kr 0.00 0.02 1.01 1.09 1.07 1.06 1.04
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FIG. 3. Interchain optical conductivity at half filling for U �
0.65W , b � 40�W , and t� � 0.14 and 0.07 (solid and dashed
lines) and for U � 1.0W , b � 40�W , and t� � 0 (dotted line).

displayed in Fig. 4 for a value of t��W � 0.11. At low
temperatures the Korringa law 1��T1T� � const is recov-
ered, while at higher temperatures 1�T1T is temperature
dependent. The observed T dependence is consistent
with 1��T1T� � TKr21 [5] with a T-dependent exponent
Kr # 1, indicative of a LL evolving gradually into a FL
(cf. Fig. 1). As for the doped case, the FS is nearly indis-
tinguishable from the noninteracting case (see Fig. 5). The
QP residue Zk�

depends only very weakly on the Fermi
surface point (Table III). The k� dependence of Z�k�� is
quite different from the doped case, with very shallow
minima at k� � 6p�2, corresponding to a vanishing
interchain kinetic energy. This small variation is however
on the scale of our error bars. We contrast our findings
with the conclusions drawn from the “single-chain” (RPA)
approximation [6,21]: S � S1D. As recently pointed
out [21], RPA predicts that the FS close to the transition
should consist of disconnected electron and hole “pock-
ets,” as depicted schematically in Fig. 5. This is because
the self-energy of a MI diverges at low frequency for k �
p�2, so that no FS point can correspond to this value of
k. In contrast, our data find a conventional connected FS

β2χ(
β
2

)

T
W

20

40

60

0.02 0.04 0.06 0.08 0.10

FIG. 4. 1��T1T � versus T in the half-filled case with t��W �
0.11, U�W � 0.65. The crossover from a FL at low T to a LL
for T�W $ 0.025 is clearly apparent.
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FIG. 5. FS in the half-filled case with t��W � 0.14, U�W �
0.65 (circles), compared to the FS of the noninteracting case
(dotted line) and of the purely 1D case (t� � 0, dashed line).
The solid line depicts schematically the FS obtained within the
RPA (S � S1D) [21].

down to the transition point (up to our numerical accu-
racy). This shows that it is crucial, as done in ch-DMFT,
to take into account the feedback effects of the interchain
hopping in the self-energy.

In conclusion, we have shown in this Letter that the
ch-DMFT approach is a tool of choice for the study of
the crossovers and insulator-to-metal transitions induced
by transverse hopping in Q1D systems. Our results are
qualitatively reminiscent of experimental observations on
organic conductors, such as the deconfinement transition
itself, the crossover from a LL at high T to a FL at low
T (as revealed, e.g., in NMR), and most significantly the
coexistence of a Drude feature with small spectral weight
and of a Hubbard-band feature in the optical conductivity.
We believe that the ch-DMFT approximation (i.e., neglect-
ing the interchain momentum dependence of S) is reason-
able for temperatures such that the interchain correlation
length is small. Extensions of the model including on-site
and nearest neighbor interactions would allow us to study
the deconfinement transition at quarter filling and thus to
make a more realistic [3,9] comparison with experimental
results. We hope to address this problem in future work.
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TABLE III. QP weights Z�k�� for different points on the FS
(half-filled case, t� � 0.14W , U�W � 0.65).

k��p 0.23 0.38 0.50 0.62 0.77

Z�k�� 0.79 0.77 0.76 0.77 0.79
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