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Spectral and Magnetic Properties of a- and g-Ce from Dynamical Mean-Field Theory
and Local Density Approximation
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We present excitation spectra for Ce metal obtained with an ab initio scheme combining local density
approximation and dynamical mean-field theory including itinerant spd and correlated f states. The
local interactions among the f electrons lead to typical many-body resonances in the f density of states
(DOS), such as lower and upper Hubbard bands and the Kondo resonance. The spd DOS show weak
renormalization effects due to hybridization. We observe different Kondo temperatures for a- and g-Ce
due to strong volume dependence of the effective hybridization strength for the localized f electrons.
Finally we compare our results with a variety of experimental data.
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Ce metal is the simplest lanthanide compound with only
one atom in a face centered cubic (fcc) crystal structure
and a relatively small set of relevant electronic states de-
rived from s, p, d, and f orbitals of Ce. It shows a unique
isostructural (fcc to fcc) a ! g phase transition with in-
creasing temperature. The high-temperature g phase has
15% larger volume and displays a Curie-Weiss-like tem-
perature dependence of the magnetic susceptibility signal-
ing the existence of local magnetic moments while the a

phase shows a Pauli-like temperature independent para-
magnetism [1].

While many different models were proposed to describe
this system (for a review see [2]), the most relevant seems
to be the periodic Anderson model (PAM). Studies based
on the single impurity Anderson model [3], which with
some caution can be viewed as a zeroth-order approxima-
tion to the PAM, with a hybridization function obtained
from local density approximation (LDA) band structure
calculations were rather successful in reproducing Kondo
scales and spectra for a- and g-Ce. However, empirical
renormalizations of the hybridization function and position
of the impurity level were needed for satisfactory agree-
ment between calculated and experimental spectra. In ad-
dition, Laegsgaard et al. [4] states that a rescaling of the
hybridization function is necessary in order to describe the
phase transition. Recently, quantum Monte Carlo calcula-
tions for the PAM with a phenomenological form of the
hybridization have been performed [5]. Since the physics
of the system critically depends on the behavior of this
quantity in the vicinity of the Fermi level [6], results ob-
tained within simplified models can serve only to elucidate
qualitative aspects. In addition, the temperature accessible
in these calculations is too high to make reliable statements
about possible low-energy scales in the case of g-Ce.

Because of the development of the dynamical mean-field
theory (DMFT) [7] and the recently proposed combination
of DFT/LDA and DMFT [8–17] a more realistic treatment
of Ce systems is now possible, as has been demonstrated
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recently for the Ce monopnictides [18]. Here we present
results obtained within LDA 1 DMFT�NCA� [11,19] for
Ce metal.

In contrast to the Hubbard model (degenerate and non-
degenerate), where hybridization occurs only between cor-
related d or f orbitals, Ce is much more complicated. The
direct f-f hybridization is of the same order of magnitude
as the hybridization of f orbitals with the delocalized spd
states. Thus in order to describe Ce we even have to go
beyond the standard periodic Anderson model and use the
full (s, p, d, f) basis set for the Hamiltonian.

In the following we will concentrate on a simplified local
interaction. Thus we introduce only two distinct Coulomb
parameters: the intraorbital Coulomb energy U in case of
a doubly occupied orbital and the interorbital Coulomb
energy U 0 for a doubly occupied f shell with electrons
on f orbitals with different indices. Since we neglect any
exchange correlations, which are typically of the order of
one tenth of the Coulomb interaction, U � U 0 in order
to fulfill the condition of rotational invariance of the local
interaction [20]. The inclusion of the full local Coulomb
interaction has already been investigated [11] and is in
principle possible here, too. However, because of the large
number of f orbitals the inclusion of the full Coulomb
matrix is currently too cumbersome from a computational
point of view. We thus arrive at an interaction of the form

Hlocal
corr � U

X

m
n̂m"n̂m# 1

U 0

2

mfim0X

m,m0,s,s 0

n̂ms n̂m0s 0 . (1)

The most important feature of the DMFT is that the proper
one-particle self-energy due to the local Coulomb interac-
tion is purely local [7]. Thus, we obtain as an expression
for the full Green function of the interacting system

G�z� �
1
N

X

�k

�zI 2 h��k� 2 S�z�If�21, (2)

where the noninteracting one-particle Hamiltonian h��k�
and consequently G�z� will in general be matrices in
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orbital space; If is the diagonal matrix with matrix ele-
ments equal 1 for f orbitals and zero for all others, and I is
the unit matrix. The �k summation is done by a standard
tetrahedron method [8]. Within this method one can
easily treat hybridization effects between correlated and
noncorrelated states.

As starting point of our calculation we determined the
one particle LDA Hamiltonian with the LMTO method [21]
considering the 6s, 6p, 5d, and 4f shells. The nonin-
teracting one-particle Hamiltonian h� �k� was obtained by
subtracting the Hartree contribution of (1) from the LDA
results in order to avoid double counting [8,11,12]. The
value of the Coulomb interaction was calculated by a su-
percell method [22] and found to be U � 6 eV. The
chemical potential was adjusted to conserve the number
of particles (4 electrons per site) during the self-consistent
LDA 1 DMFT calculation. Analyzing the partial densi-
ties of states one can observe for both a- and g-Ce at
a temperature of T � 580 K renormalization effects, in
particular, broadening and shifts of structures, for s and d
states but only marginal effects for the p states. This is a
consequence of the hybridization, which is seen by a non-
vanishing s or d density at the position of the f states in
the LDA result. The f states are strongly renormalized.
A lower Hubbard band (LHB) is observed at the position
of the corrected (double counting) LDA f state at about
23 eV. The upper Hubbard band (UHB) is situated at
about 4.5 eV and describes an excitation of a doubly oc-
cupied f state. At the Fermi level one observes a Kondo
resonance (KR) for a-Ce, which can be described by a
singlet formation between an unpaired f electron and the
surrounding conduction electrons. The d-density for a-Ce
shows an onset of a hybridization gap, which is well known
in model calculations for the periodic Anderson model [23]
and is a consequence of the formation of the singlet state
between the unpaired f spins and the conduction electrons.
For g-Ce one observes only the onset of a KR as a con-
sequence of the smaller TK compared to the a phase, and
thus no hybridization gap opens in the conduction electron
density.

In Table I we show a comparison of our results with
the results of spectral fits to electron [3] and high-energy
neutron spectroscopy [24]. In [3] the spectral fits were
TABLE I. Comparison between LDA 1 DMFT�NCA� calculated parameters for both a and g phases at T � 580 K and experi-
mental values.

a-Ce g-Ce
LDA 1 DMFT�NCA� a-Ce [3] a-Ce [24] LDA 1 DMFT�NCA� g-Ce [3] g-Ce [24]

P0 0.126 0.1558 0.0150 0.0426
P1 0.829 0.8079 0.9426 0.9444
P2 0.044 0.0264 0.0423 0.0131
nf 0.908 0.861 0.8 1.014 0.971 1
TK , (K) 1000 945 1800, 2000 30 95 60
x�0�, �1023 emu�mol� 1.08 0.70 0.53 24 8.0 12
Day , (meV) 86.6 66.3 42.7 32.2
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done by using a hybridization function obtained from a
standard LDA calculation, which served as a basis to cal-
culate the spectral functions of a single impurity Anderson
model. However, it turned out that LDA cannot reproduce
the experimental data satisfactorily. Thus a compensating
factor k multiplied to the hybridization function explained
by a self-interaction correction argument was introduced.
In contrast to this work, we use a parameter-free ab initio
calculation to explain the experimental results. The occu-
pation probabilities are in fair agreement with [3], as well
as the number of f electrons per site, nf . The occupation
probabilities P0, P1, and P2 for the states f0, f1, and
f2 were calculated from the particular ionic propagators.
The Kondo temperature for a-Ce, TK,a � 1000 K, is
roughly given by the width of the KR. Since for g-Ce
the Abrikosov-Suhl resonance is not yet well developed, it
makes no sense to estimate TK from its width. Instead, for
g-Ce we estimate TK from the ratio of the hybridization
strength at the Fermi level of both considered materials
[Im�Da�´F ���Im�Dg�´F�� � 2], assuming the standard
exponential dependence of TK on model parameters. With
this relation we obtain TK,g � 1

30TK,a [25]. Since the
NCA for multiband models typically underestimates TK ,
it is obvious that our absolute values cannot be expected
to match with the experiments. The surprisingly good
agreement for a-Ce seen in Table I is probably by chance
and due to the neglect of Hund’s rule coupling and spin-
orbit splitting, which typically will lead to a smaller TK .
Nevertheless, the ratio of the Kondo temperatures for the
two different phases should be meaningful and is in good
agreement with experiment (see Table I). The static sus-
ceptibilities x�0� calculated with TK as an input via
x�0� � C 12P0

TK
naturally have the same qualitative charac-

ter. In this formula C is the Curie constant for the lowest
4f state with j �

5
2 and P0 is the probability of the f0

state. Again, the ratio of the susceptibilities for both phases
are in good agreement with experiment (see Table I).
Also included in Table I is the quantity Day, which
represents the averaged value of the imaginary part of the
hybridization function Im�D�v�� over an energy interval
from 23 to 0 eV [26].

The imaginary part of the hybridization functions
in Fig. 1 (full curves) shows strong renormalizations
276403-2
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FIG. 1. Imaginary part of the hybridization function in the
DMFT (full lines) as compared to the double-counting corrected
LDA results (dashed lines).

compared to the double-counting corrected LDA results
(dashed curves), especially close to the Fermi energy. This
also implies drastic changes of this quantity compared to
the one used in Ref. [3]. Note also that the total weight
of this quantity for a-Ce is twice as high as the one for
the g phase. Very important is here the inclusion of all
s-, p-, and d-conduction states. The use of correlated f
states only would produce a too small hybridization at the
Fermi energy and thus a too small TK .

In the PES data for a-Ce in the upper part of Fig. 2
the observed peaks are identified as f contributions to the
density of states by a cross section argument using differ-
ent photon energies [27]. Thus we compare the experi-
ment with the calculated partial density for f states. The
theoretical f spectrum shows a LHB which is also seen in
the experiment. In contrast to experiment, the calculated
LHB appears to be much broader and its center is shifted
to lower energies by about 0.5 eV. While the broadening
must be attributed to the NCA, the shift can have multiple
reasons. For example, an uncertainty in the Coulomb pa-
rameter U or the use of the simplified Coulomb interaction
(1) may easily account for the discrepancy.

The BIS spectrum for a-Ce shows a main structure be-
tween 3 and 7 eV, which is attributed to 4f2 final state
multiplets. In the calculated spectrum all excitations to
4f2 states are described by the featureless UHB. As a
consequence of the simplified interaction model all doubly
occupied states are degenerate. This shortcoming in our
calculation is responsible for the sharp peaked structure
of this feature. The neglected exchange interaction would
produce a multiplet structure, which would be closer to
the experiment. The experimental peak at about 0.5 eV is
attributed to two 4f1 final states, which are split by spin-
orbit coupling. The calculated f spectrum shows a sharp
276403-3
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FIG. 2. Comparison between combined PES [27] and BIS [29]
experimental (circles) and theoretical (solid line) f spectra for
a-Ce (upper part) and g-Ce (lower part) at T � 580 K. The
relative intensities of the BIS and PES portions are roughly for
one 4f electron. The experimental and theoretical spectra were
normalized and the theoretical curve was broadened with resolu-
tion width of 0.4 eV. In the insets a comparison between RIPES
[30] experimental (circles) and theoretical (solid line) f spectra
is given. The experimental and theoretical data were normalized
and the theoretical curve was broadened with broadening coef-
ficient of 0.1 eV.

KR slightly above the Fermi energy, which is the result of
the formation of a singlet state between f and conduction
states. We thus suggest that the spectral weight seen in the
experiment is a result of this KR. Since we did not yet
include spin-orbit coupling in our model, we, of course,
cannot observe the mentioned splitting of the resonance.
However, as it is well known [28], the introduction of such
a splitting would eventually split the KR. If we used the
experimentally determined value of about 0.3 eV for the
spin-orbit splitting [29], the observed resonance of width
0.5 eV would indeed occur in the calculations.

In the lower part of Fig. 2 a comparison between ex-
periment and our calculation for g-Ce is shown. The most
striking difference between lower and upper figures is the
absence of the KR in the high temperature phase (g-Ce;
transition temperature 141 K [1]) which is in agreement
with our calculations.

In the insets of Fig. 2 our results for the nonoccupied
states in the f density are compared with RIPES data [30].
The calculated f spectra were multiplied by the Fermi-step
function and broadened with a Lorentzian of the width
0.1 eV in order to mimic the experimental resolution in
276403-3



VOLUME 87, NUMBER 27 P H Y S I C A L R E V I E W L E T T E R S 31 DECEMBER 2001
the theoretical curves. Here, as above the theoretical over-
estimation of the UHB, is a consequence of the simplified
local interaction and thus of the missing multiplet structure
of the 4f2-final states. The main feature of the experimen-
tal spectra: strong decreasing of the intensity ratio for KR
and UHB peaks going from a to g phase, can also be seen
in the theoretical curves.

In conclusion, we have presented a realization of a com-
bination of density-functional theory in the local density
approximation and the dynamical mean-field theory to ob-
tain a first-principles computational scheme for heavy-
fermion systems. The scheme was set up for the first time
with a combination of correlated and noncorrelated states
in order to introduce the important effect of hybridization
between s, p, and d states and strongly correlated f states.
The solution of the DMFT equations was done by using the
noncrossing approximation. We calculated the one-particle
spectra for a- and g-Ce and found Kondo temperature val-
ues (TK,a � 1000 K and TK,g � 30 K), which explain the
experimental results.

We observe quite reasonable results concerning occupa-
tion probabilities P0, P1, P2, and the number of f electrons
per site nf . The ratio of TK and thus the static suscepti-
bilities x�0� values for two phases are in fair agreement
with the experimental results considering the problems of
the NCA method. Moreover, we found qualitative good
agreement with PES, BIS, and RIPES experiments, i.e.,
the positions of LHB, UHB, and the Kondo resonance.
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