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Identifying and Indexing Icosahedral Quasicrystals from Powder Diffraction Patterns

Peter J. Lu,1,* Kenneth Deffeyes,2 Paul J. Steinhardt,1 and Nan Yao3

1Department of Physics, Princeton University, Princeton, New Jersey 08544
2Department of Geology, Princeton University, Princeton, New Jersey 08544

3Princeton Materials Institute, Princeton University, Princeton, New Jersey 08544
(Received 29 August 2001; published 13 December 2001)

We present a scheme to identify quasicrystals based on powder diffraction data and to provide a
standardized indexing. We apply our scheme to a large catalog of powder diffraction patterns, including
natural minerals, to look for new quasicrystals. Based on our tests, we have found promising candidates
worthy of further exploration.
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Quasicrystals are solids whose diffraction patterns
exhibit a rotational symmetry, such as fivefold symmetry,
that is forbidden for periodic crystals [1]. The forbid-
den symmetry is related to the fact that the atoms are
arranged quasiperiodically. Quasiperiodic translational
order has physical consequences. For example, since
electrons and phonons in quasicrystals do not encounter a
periodic potential, quasicrystals have unusual resistive and
elastic properties, and these have been exploited in several
applications [2]. To date, known quasicrystals have
been found by serendipity or by probing stoichiometric
variations around other already known quasicrystals and
approximants. Furthermore, all known quasicrystals are
synthetic; no natural quasicrystal has ever been found. A
more systematic way to search for quasicrystals, including
natural quasicrystals, is desirable, and one way is to search
through collections of diffraction data. Although a two-
dimensional electron diffraction pattern would immedi-
ately show a quasicrystal’s salient forbidden symmetry, no
large collection of such patterns exists. However, a collec-
tion of over eighty thousand powder diffraction patterns in
digital form, the powder diffraction file (ICDD-PDF), is
published by the International Center for Diffraction Data.
The catalog contains synthetic inorganic and organic
phases, as well as some nine thousand mineral patterns.
Because the powder diffraction pattern of a material
averages over all orientations, only the magnitude (and
not the direction) of the scattering vector in reciprocal
space is preserved, and a quasicrystal’s distinctive non-
crystallographic symmetry cannot be observed directly. A
priori, it is unclear if quasicrystals can be identified from
their powder diffraction patterns alone.

In this Letter, we present a method to identify, classify,
and index icosahedral quasicrystals based solely on their
powder diffraction patterns. We apply the method to the
ICDD-PDF and find the best-fit quasicrystal candidates.
Our automated procedure picks out the known quasicrys-
tals in the ICDD-PDF and, for the cases in which indexing
has been published, produces the same indices. Although
the remainder of the catalog is supposed to consist of peri-
odic crystals, it was assembled over many years, including
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decades prior to the 1984 discovery of quasicrystals. Con-
sequently, it is conceivable that the catalog includes some
quasicrystals that were never identified as such. Based on
our studies, we report promising materials.

The diffraction pattern of an ideal three-dimensional
quasicrystal consists of Bragg peaks located on a lattice
given by �Q �

P6
i�1 ni

�bi , where the �bi are basis vectors
pointing to the vertices along the six fivefold symmetry
axes of a regular icosahedron in three dimensions, and the
ni are integers that index each vector. The quasicrystal for-
mula is similar to that for a crystal except that the number
of basis vectors is greater than the number of dimensions
(three), a consequence of the noncrystallographic symme-
try. We choose the �bi following the convention in [3]:

�b1 � �1, t, 0�, �b2 � �t, 0, 1�, �b3 � �0, 1, t� ,

�b4 � �21, t, 0�, �b5 � �t, 0, 21�, �b6 � �0, 21, t� .

(1)

t is the golden ratio, �1 1
p

5��2. An equivalent
way to index the position of the three-dimensional
reciprocal-space scattering vector is to use a scheme
analogous to crystallographic Miller �h k l� indices.
Six integer indices grouped into pairs describe the
distance along Cartesian basis vectors, �Q � �h 1

h0t�x̂ 1 �k 1 k0t�ŷ 1 �l 1 l0t�ẑ. The �h�h0 k�k0 l�l0�
indices are permutations of the ni :

h � n1 2 n4, h0 � n2 1 n5, k � n3 2 n6 ,

k0 � n1 1 n4, l � n2 2 n5, l0 � n3 1 n6 .
(2)

Because the �h�h0 k�k0 l�l0� indices express distances
along Cartesian axes, the advantages of orthogonal coor-
dinate axes are conveniently recovered. Also, associated
with every �Q is a vector �Q�, constructed from another in-
teger linear combination of the same basis vectors: �Q� �
�h0 2 ht�x̂ 1 �k0 2 kt�ŷ 1 �l0 2 lt�ẑ �

P6
i�1 ni

�b�
i ,

where

�b�
1 � �2t, 1, 0�, �b�

2 � �1, 0, 2t�, �b�
3 � �0, 2t, 1� ,

�b�
4 � �t, 1, 0�, �b�

5 � �1, 0, t�, �b�
6 � �0, t, 1� .

(3)
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In powder diffraction patterns, the reciprocal space is
collapsed to one dimension, where all vectors with the
same magnitude j �Qj are degenerate. The magnitude
j �Qj � Q is the reciprocal of the d spacing, the quan-
tity listed in the entries of the ICDD-PDF. Q2 and
j �Q�j

2 � Q2
� can now be expressed as integer linear

combinations of only two basis vectors, whose lengths
are related by the golden ratio: Q2 ~ N 1 tM and
Q2

� ~ Nt 2 M, where N � 2
P6

i�1 n2
i and M �

h02 1 k02 1 l02 1 2�hh0 1 kk0 1 ll0�. Each peak in a
quasicrystal powder diffraction pattern can be indexed by
the two integers N and M. The entire diffraction pattern
can be scaled by a factor of t3 along the Q direction,
and the support will remain the same, a consequence of
the self-similarity of the pattern. That is, for each lattice
vector at position Q2 � �N , M�, there is another lattice
vector of similar intensity at position �N 0, M 0� � t6Q2.
Using the relation t2 � t 1 1,

�N 0, M 0� � N 0 1 M 0t � t6�N 1 Mt�

� �5M 1 8N� 1 �8M 1 13N�t

� �5M 1 8N , 8M 1 13N� . (4)

Although three other different indexing schemes persist in
the literature to describe icosahedral quasicrystal powder
patterns [4–6], they are all analytically equivalent to the
convention given here.

There are three distinct icosahedral reciprocal lattices:
simple icosahedral (SI), face-centered icosahedral (FCI),
and body-centered icosahedral (BCI). The SI, FCI, and
BCI reciprocal lattices correspond to real-space lattices ob-
tained by, for example, placing identical “atoms” at each
lattice point of a simple hypercubic, a face-centered hy-
percubic, and a body-centered hypercubic lattice in six
dimensions, respectively, and projecting down to three di-
mensions. (In [7], the SI, FCI, and BCI lattices are referred
to as P*, I*, and F*, respectively.) For these primitive lat-
tices, the intensity is given by [8]

I ~

∑
sin�Q��2�

Q��2

∏2

. (5)

Note that I increases as Q� ! 0 so that bright peaks —the
ones likely to be observed experimentally —have small
Q�. Equation (5) does not account for chemical and other
effects that modulate the intensities in the diffraction pat-
tern of a real material, but it provides a guide as to which
peaks should be observed when testing real patterns.

Testing patterns.—The first step in testing a real pow-
der pattern is to find the best possible peak-by-peak match
between that pattern �Qi� and the perfect quasicrystal tem-
plate pattern �qi�. Then, various statistical tests can be
applied to compare that match to what is expected for a
true quasicrystal.

If we were to match to a periodic crystal template pat-
tern, the test would be more straightforward. For any finite
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interval of Q over which a pattern is measured, a real crys-
tal has a finite number of diffraction peaks. One also has
good a priori estimates for the nonzero minimum distance
between nearest peaks, which is set by the lattice constant.
These features, useful in matching the template to the real
pattern, allow a unique indexing.

For the quasicrystal, the process is more complicated be-
cause the number of peaks in any finite interval of the ideal
pattern is infinite (the pattern is dense) and, consequently,
there is no uniquely defined lattice constant or indexing.
How does one sensibly match a real pattern, with a finite
number of peaks in a given interval DQ, to a quasicrystal
template pattern, with a dense set of peaks in that same in-
terval? One must account for the intensity of the peaks, not
just their Q. Although the quasicrystal powder pattern is
dense, most of its peaks within any finite interval of Q have
a large Q� and are predicted by Eq. (5) to be too dim to
distinguish from the noise present in any real experiment.
So, instead of finding the template qi 0 , which comes closest
to the observed Qi (i.e., minimizing jQ2

i 2 q2
i 0 j alone), we

instead minimize jQ2
i 2 q2

i 0 j�Ii 0, which includes the inten-
sity Ii 0 of the i0th template peak. This approach tends to
match real Qi to the nearest bright peaks in the template
pattern, naturally accounting for phason shifts, imperfec-
tions, and experimental error that may shift Qi from its
ideal value and cause an incorrect assignment to some qi 0

with an unrealistically small intensity.
The procedure for finding the best match between the

real and template patterns, then, is as follows. Choose
some bright peak in the ideal pattern �N0, M0� with a low
value of N . An “attempted match” consists of rescaling
its magnitude to match the first real peak in the pattern,
Q1. Identify each remaining peak Qifi1 in the real pattern
with the template peak qi0 which minimizes jQ2

i 2 q2
i 0 j�Ii 0 .

Next, introduce a goodness-of-fitness parameter S1 to char-
acterize the attempted match between the �Qi� and the �qi 0�.
Repeat the process by assigning �N0, M0� to the second real
peak Q2 and compute its goodness of fit, S2. After repeat-
ing for each real peak, use the lowest Sj to decide the best
overall match between the real pattern and template. Each
real peak Qi is now assigned the set of indices �ni 0� or,
equivalently, �Ni 0, Mi 0� of the matching template peak.

The goodness-of-fit parameter Sj depends on D̄ �
�jQi 2 qi 0 j�Qi�, where �Oi� denotes an intensity-weighted
average �

P
i
p

Ii Oi���
P

i
p

Ii �. D̄ measures the fractional
deviation between Qi and qi 0 and is weighted by intensity
for the same reasons as above. (Results do not change
significantly if

p
Ii is replaced by Ii or some similar

function of intensity.) One challenge is that for each good
fit of Qi to a template peak qi 0 labeled by �N , M�, there
is also an equally good fit to the peak t6k�N , M� where k
is any integer, due to the self-similarity of the lattice; see
Eq. (4). This leads to the practical problem of deciding
which match to choose and also the annoyance that, unlike
a crystal, the indexing is not unique. To produce a unique
and sensibly standardized indexing, we simultaneously
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minimize N̄ � �Ni�. The goodness of fit S can be taken
to be a linear combination of these two parameters,
S � aD̄ 1 N̄ . The results are relatively insensitive to the
choice of a (up to an order of magnitude) provided that
the D̄ and N̄ contributions to S are both non-negligible
for known quasicrystals; typical values are N̄ 	 30 and
D̄ 	 0.3, and we used a � 500 throughout.

If the real material is a crystal, the best attempted match
to the quasicrystal template (corresponding to the lowest
Sj) is still a poor match relative to a true quasicrystal, so
we next introduce statistical tests to measure the quality of
the match. These tests were found empirically by applying
them first to known quasicrystals, and they involve cal-
culating several quantities for each pattern. The first two
statistical quantities, D̄ and Q̄� (the intensity-weighted
average of Q�), are discussed above. Quasicrystals have
low values of both, representing closer matches to brighter
peaks. However, finite resolution limits the number of
peaks present above the noise level; while these two
parameters clearly separate out FCI quasicrystals (see
Fig. 1), they fail for the SI case, where 1700 patterns
score better than known SI quasicrystals when ranking
only by these two statistics. We therefore consider another
quantity that involves interrelations among the bright
peaks in a quasicrystal powder pattern.

Each peak in a powder pattern has a parity determined
by h �

P
i ni. Even (odd) h corresponds to even (odd)

FIG. 1. A plot of the distribution of quantities D̄ and Q̄� for
eleven patterns identified as FCI quasicrystals in the ICDD-PDF
(white circles) and 60 000 patterns identified as crystals (grey
dots). The large square shows the scatter plot in the two-
dimensional parameter space, in arbitrary units with the origin
at lower left. Rectangles along either axis show the individual
histograms of D̄ and Q̄�. Means and standard deviations for
each individual quantity are marked by dashed and dotted lines,
respectively. The quasicrystals are projected to show that they
lie at the tail of the distributions.
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parity. Over a finite interval, certain sequences of even
and odd peaks appear. For a given bright peak at Q0,
there are other bright peaks at Q � Q0 1 DQ, where
DQ � DN 1 DMt � �DN , DM�. All of these peaks
should have low values of Q� and will therefore be sepa-
rated by small DQ2

� � DNt 2 DM. DM�DN should
approximate t, the golden ratio, and, as is well known,
the best approximant is a ratio of subsequent Fibonacci
numbers. Hence, for every peak in the powder pattern,
we look for other peaks separated by “Fibonacci intervals”
�DN , DM�, where DN and DM are either successive Fi-
bonacci integers or constant multiples of these integers. In
the SI case, we search for two types of intervals: those
occurring between peaks of opposite parity, which involve
successive Fibonacci numbers, such as �2, 3� and �34, 55�,
and those occurring between peaks of the same parity,
which involve four times successive Fibonacci numbers,
such as �8, 12� and �20, 32�. In the FCI and BCI cases,
only even-parity peaks are present, and we seek only se-
quences with four times successive Fibonacci integers.

For each ith peak in the real pattern, we count the num-
ber of other real peaks that are separated from it by one
of the Fibonacci intervals. If there is only one such peak,
then the ith peak is considered part of a pair (or 2-plet);
if two, part of a 3-plet, etc. We define M

�m�
i to be 1 if

the ith peak is part of an m-plet and zero otherwise. Note
that M

�m�
i � 1 implies M

�m21�
i � 1. For example, if the

ninth peak in a pattern is separated from three other peaks
by Fibonacci intervals, then M

�2�
9 � M

�3�
9 � M

�4�
9 � 1 and

M
�5�
9 � 0. The values of M

�m�
i for each peak are combined

into intensity-weighted averages M̄�m� � �M�m�
i �.

The three average quantities D̄, Q̄�, and M̄�4� are uni-
fied into a single x2 statistic, which quantifies the degree
of quasicrystallinity of a powder x-ray diffraction pattern.
First, the distribution for each quantity, calculated for all
60 000 entries in the ICDD-PDF with a dozen peaks or
more, is fit to a standard Gaussian by matching percentiles.
Then, x2 is calculated from the three normalized measures.
All patterns with any worse-than-average quantity are dis-
carded and the remaining patterns with a high value of x2

represent patterns with characteristics most like those of
the known quasicrystals.

Results.—The x2 statistic has proven to be a reliable
method of identifying and indexing quasicrystal diffrac-
tion patterns. For example, Fig. 1 shows a scatter plot
of D̄ vs Q̄� for 60 000 patterns from the ICDD-PDF.
The eleven patterns known to be synthetic quasicrystals
of the FCI structure (by checking the references given in
the ICDD-PDF) are represented by white circles; the re-
maining patterns are shown in grey. The clustering of
the eleven quasicrystals apart from the remaining points
demonstrates the success of the tests in separating out qua-
sicrystal patterns. The few grey dots around the white
quasicrystal circles are patterns identified as crystalline in
the ICDD-PDF that might be misidentified quasicrystals.
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TABLE I. Top quasicrystal candidates for SI, FCI, or BCI lat-
tices. Type refers to whether candidates were labeled in the
ICDD-PDF as quasicrystal, synthetic crystal, or mineral crystal.
Shown are a typical quasicrystal, and the top five synthetic and
top mineral candidates. The best known quasicrystals have x2

values up to 154.8 (SI) and 397.8 (FCI).

PDF num Formula Lattice Type x2

New data [9] CdYb SI QC 34.7
27-901 SnTe3O8 SI Syn 28.4
42-842 InP3 SI Syn 27.9
44-583 CaUO4 SI Syn 27.4
21-117 Cd�MnO4�2 ? 6H2O SI Syn 21.4
38-923 K2NaPdF6 SI Syn 19.8
25-298 Aktashite, SI Min 17.9

Cu6Hg3As4S12

48-1437 Al68.5Pd22.1Mn9.4 FCI QC 92.0
40-106 Ba3La40V12O93 FCI Syn 40.3
19-261 CaYb2O4 FCI Syn 38.9
31-1420 UO3 FCI Syn 34.1
41-979 Cr0.9Ta5.1S FCI Syn 33.8
27-863 Sr7Y13O4�PO4�3�SiO4�9 FCI Syn 33.7
2-691 Tantalite, FCI Min 25.2

�Fe, Mn�Ta2O6

21-379 InPtU BCI Syn 40.1
50-1135 Co4Sn13Tb3 BCI Syn 36.2
42-1163 Pb10Al2F25Cl BCI Syn 26.8
45-1164 Al20Mo1.656Th BCI Syn 25.9
36-1231 LaNiO2 BCI Syn 24.9
44-1412 Gratonite, BCI Min 14.3

Pb9As4S15

However, many of these possibilities are eliminated when
the remaining M̄�4� test is applied. Because no one or two
tests are completely effective, we combine three quantities
into a x2 statistic.

Table I lists the top quasicrystal candidates for the SI,
FCI, and BCI structures. For each structure, the list in-
cludes a typical example of a known quasicrystal (except
BCI, where none is known), the top five synthetic materi-
als identified as crystalline, and the top mineral candidate
in the ICDD-PDF. The ranking should not be taken as an
absolute measure. Different versions of the statistical tests
can alter the ranks of some promising candidates, some-
times significantly, but those shown remain among the top
ranked throughout. Our quasicrystal example in the SI
case is the recently discovered binary alloy, CdYb [9]. In-
terestingly, a stoichiometrically similar phase, (ostensibly
crystalline) Cd6Yb, placed seventh in the BCI top candi-
date list. For the BCI case, there is no known quasicrystal,
and though the top candidates have high values of x2, the
x2 values cannot be compared directly between different
structures since statistical tests are different. Nevertheless,
the high scores suggest followup studies of the best candi-
dates, particularly InPtU and Co4Sn13Tb3.

A further success is that our automated indexing of
peaks for the known quasicrystals matches the available
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published indices. In some cases, while the published in-
dices are aided by two-dimensional diffraction data, our
automated procedure uses powder data only. Given the
unique challenges in quasicrystal indexing, described ear-
lier, the successful indexing suggests that our matching
of template and real patterns automatically incorporates
standards obtained by individual analysis. Hence, as more
quasicrystals are discovered and added to catalogs, our pro-
cedure could provide a standardized indexing.

Future work will proceed in several directions. A num-
ber of materials merit further study, and, intriguingly, the
most promising examples are in the BCI class where no
quasicrystal has yet been found. Systematic studies of syn-
thetic materials with nearby stoichiometries may also be
merited. Finally, we are collecting the powder diffraction
patterns of other materials, including known quasicrystals
and crystal approximant phases, to further refine our tests.
We are interested in collaborating in exploring the lead-
ing candidates, only some of which have been given in
Table I. Those interested are encouraged to contact P. J. L.
and P. J. S.
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