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Effect of Pressure on Statics, Dynamics, and Stability of Multielectron Bubbles
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The effect of positive and negative pressure on the modes of oscillation of a multielectron bubble in
liquid helium is calculated. Already at low pressures of the order of 10–100 mbar, these effects are
found to significantly modify the frequencies of oscillation of the bubble. Stabilization of the bubble is
shown to occur in the presence of a small negative pressure, which expands the bubble radius. Above
a threshold negative pressure, the bubble is unstable.
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Multielectron bubbles (MEBs) in liquid helium are fas-
cinating entities expected to display novel resonant be-
havior, the possibility of superconductivity, and sufficient
electron density for Wigner crystallization and quantum
melting. MEBs are bubbles inside the helium, containing
only electrons that form a curved two-dimensional elec-
tron gas (2DEG) on the spherical surface of the bubble,
the width of the thin spherical shell that conforms to the
helium surface being of order 5–20 Å [1,2], compared to
70–80 Å on a flat surface [3]. New efforts to trap and
localize MEBs for long periods of time [4] have led to fur-
ther consideration of the long term stability of bubbles. In
this Letter we discuss the use of pressure and, in particu-
lar, negative pressure to stabilize MEBs against dynamic
instabilities.

The radius of the bubble depends on the enclosed charge.
In a simplified model, valid for large bubbles, the radius is
given by RC � �e2N2��16ps´��1�3, where e is the elec-
tron charge, N is the number of electrons in the bubble, s

is the surface tension of helium, and ´ is the dielectric con-
stant of helium [1]. A single electron bubble has a radius
of 17.2 Å [5] while, for example, a bubble of 104 electrons
has a theoretical radius of 1 mm. There is some question
about the static stability of an MEB: since the energy of the
bubble, defined as the sum of the electrostatic and the sur-
face tension energy, is proportional to N4�3 [1], clearly the
energy of two bubbles with N�2 electrons is lower than that
of a single bubble with N electrons. Evidently fissioning
is hindered by a formation barrier, since MEBs have been
observed [6]. Gravitational fields may flatten very large
bubbles and lead to instability [1]. Dexter and Fowler [7]
showed that two-electron bubbles are unstable. Salomaa
and Williams [2] considered the dynamic stability against
fissioning off of single electrons from large bubbles and
found stability against this decay mode for bubbles with
N greater than 15–20. It is straightforward to show that
a positive pressure radially stabilizes a bubble, although
angular modes can be unstable. With increasing negative
pressure the bubble is first absolutely stabilized and then
explodes, as we describe. Salomaa and Williams also con-
sidered the dynamic instability due to one of the surface
oscillation modes, or ripplons, being soft (zero frequency)
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and found that this mode may be stabilized by the anhar-
monicity in the bubble’s radial oscillation that results in
a radius larger than RC. In this Letter we study pressure
related effects on the frequency of the modes of oscilla-
tion, on the equilibrium bubble radius, and on the stability
of MEBs; we show the counterintuitive result that positive
pressures can destabilize all higher angular modes, while
negative pressures have a window of stabilization. We ne-
glect gravity so that the MEBs are spherical.

The frequencies of the modes of oscillation of a charged
droplet were first calculated by Rayleigh [8], and in the
case of a charged bubble by Plesset and Prosperetti [9]. We
first set up a Lagrangian formalism to calculate the spheri-
cal ripplon modes. We then consider the effect of pressure
on the static and dynamic properties of the bubble.
The surface of the bubble is described by a function
R�u, w� that gives the distance of the surface from the
geometrical center of the bubble, in the direction given by
the two spherical angles u, w. This function can be writ-
ten as R�u, w� � Rb 1 u�u, w�, where Rb is the angle-
averaged radius of the bubble and u�u,w� describes the
deformation of the surface from a sphere. This deforma-
tion can be expanded in a series of spherical harmonic
deformations Y�m�u, w� with amplitude Q�m,

u�u, w� �
X̀
��1

�X
m�2�

Q�mY�m�u, w� . (1)

In what follows, we assume that the amplitude of deforma-
tion is small, so that for all ��, m�,

p
��� 1 1� Q�m�Rb ø 1.

The kinetic energy T associated with the motion of the
liquid helium surface can be derived from the velocity
potential c. The kinetic energy for incompressible flow
of an inviscid fluid is given by

T �
r

2

Z 2p

0
dw

Z p

0
du c�Rb,u, w�

3 �n ? =c�r, u, w�jr�Rb�R2
b sinu , (2)

with the density of helium r � 145 kg�m3, and n is the
unit vector normal to the bubble surface. The coefficients
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of expansion in spherical harmonics of the velocity poten-
tial are then expressed as a function of the deformation
amplitude Q�m, leading to

T �
rR3

b

2

X̀
��0

�X
m�2�

1
� 1 1

j �Q�mj
2. (3)

The potential energy of the deformed bubble results
from the surface tension, the pressure exerted on the
bubble, and the electrostatic forces between the electrons
of the spherical 2DEG. The surface tension energy can
be written as sS, where s � 3.6 3 1024 J�m2 is the
surface tension of helium at zero pressure and S is the
area of the deformed surface [8]:

S � 4pR2
b 1

1
2

X̀
��1

�X
m�2�

��2 1 � 1 2� jQ�mj
2. (4)

Deforming the bubble will change its volume and perform
pV work against the external pressure p of the helium
liquid. The volume of the deformed bubble up to second
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order in the deformation amplitudes is given by [8]

V �
4p

3
R3

b 1 Rb

X̀
��1

�X
m�2�

jQ�mj
2. (5)

The electrostatic energy of the electrons in the spherical
2DEG in the MEB can be derived by taking into considera-
tion that the electrons are strongly confined in the direction
perpendicular to the helium surface (the binding energy is
of the order of 10 K) and anchored to that surface, but free
to move in the directions parallel to the helium surface.
This leads to the following expression for the Coulomb
part UC of the potential energy [8]:

UC �
N2e2

2´Rb
2

N2e2

8p´R3
b

X̀
��1

�X
m�2�

�jQ�mj
2, (6)

with ´ � 1.0572 the dielectric constant of helium. This
expression is valid up to second order in the deformation
amplitude Q�m and does not include exchange or correla-
tion energies of the electron gas.

Collecting the previous expressions [(3)–(6)] for the dif-
ferent energy contributions leads to the following expres-
sion for the Lagrangian Lbubble � T 2 sS 2 pV 2 UC:
Lbubble �
rR3

b
�R2

b

2
2 4psR2

b 2
4p

3
pR3

b 2
N 2e2

2´Rb

1
X̀
��1

�X
m�2�

Ω
rR3

b

2
1

� 1 1
j �Q�mj

2 2

∑
s

2
��2 1 � 1 2� 1 pRb 2

N 2e2

8p´R3
b

�

∏
jQ�mj

2
æ

. (7)
The novel part in this Lagrangian as compared to previous
treatments [2,8,9] lies in the terms related to the pressure.
We return to the harmonic solutions of this Lagrangian
after discussing some static properties.

The equilibrium radius of large bubbles, in the absence
of deformations, Q�m � 0, can be found by minimizing
the potential energy U � sS 1 pV 1 UC as a function
of the bubble radius. The potential energy is

U�Rb� �
4p

3
pR3

b 1 4psR2
b 1

e2N2

2´�Rb 2 d�

1
Nh̄2

2med2
2 0.3176

e2N4�3

´�R2
bd�1�3

. (8)

For large bubbles, with N / 103, only the first three terms
on the right-hand side of (8) play a role—these terms are
also present in the Lagrangian (7). The fourth term (me
is the electron mass) is due to Shikin [1] who makes the
argument that there is a finite thickness d ø R of the
electron layer that should be taken into account, along with
Rb, as a variational parameter to minimize the potential
energy. The density functional calculations of Shung and
Lin [10] show that the exchange energy of the electron gas
also plays a relevant role for small bubbles (N , 1000)
and that for practical purposes it is well approximated by
adding an exchange term, the fifth term, on the right-hand
side of (8).

The equilibrium radius Req of the MEB is found as a
function of the number of electrons and the exerted pres-
sure, by minimizing the potential energy U�Rb� with re-
spect to d and Rb. The value of Rb which minimizes the
potential energy U�Rb� is the equilibrium radius Req shown
in Fig. 1 as a function of pressure for different numbers of
electrons. The pressure reduces the equilibrium radius by
a significant factor as compared to the zero pressure ra-
dius. Most of the change in Req occurs at low pressures.
The behavior of Req as a function of pressure shown in
Fig. 1 is similar for numbers of electrons up to 108 and
larger. The graph extends to negative pressure [11] in-
creasing Req, since superfluid liquid helium can sustain
a substantial negative pressure. For any number of elec-
trons in the bubble, there exists a critical negative pressure
making the bubble unstable against runaway expansion.
We found that the largest equilibrium radius that can be
achieved before the critical underpressure is reached is ap-
proximately 1.5 times the equilibrium bubble radius at zero
pressure, for any number of electrons from a few hundred
to 108. When the critical underpressure is reached, the only
equilibrium radius is Req ! `. The critical underpressure
appears to be inversely proportional to the number of elec-
trons in the bubble, but this could not be shown explicitly.
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FIG. 1 (color). The equilibrium radius R of a multielectron bubble is shown as a function of pressure for several values of N . In
the inset, the thickness d of the spherical electron shell in the bubble is shown as a function of pressure for the same numbers of
electrons. Both the equilibrium radius and the thickness were obtained by minimizing the potential energy (8). Negative pressure
can be applied up to a critical underpressure, expanding the bubble. For N � 3000 this critical underpressure is indicated with an
arrow, as well as the maximum radius of a 3000 electron bubble.
At fixed Rb (the equilibrium radius), the part of the
Lagrangian (7) pertaining to the spherical ripplon modes
represents a collection of harmonic oscillators in the coor-
dinates Q�m with ripplon frequencies

v� �

s
� 1 1

rR3
b

∑
s��2 1 � 1 2� 1 2pRb 2

N2e2

4p´R3
b

�

∏
.

(9)

These frequencies are independent of the azimuthal in-
dex m. Figure 2 shows the pressure dependence of the
frequency of the spherical ripplon modes � � 1, . . . , 10.
Note first that the � � 1, 2 modes have vanishing fre-
quencies at pressures p > 0. This was discussed for
zero pressure by Salomaa and Williams [2], who con-
cluded that the � � 2 mode can be dynamically stabilized
if the effective radius of the bubble satisfies Rb . Req
(the � � 1 corresponds to uniform translation). How-
ever, the present treatment shows that this argument is no
longer valid at increasing pressure. In fact, subsequent
modes become unstable, as can be seen from Fig. 2 and
expression (9). If the exchange and confinement energy
terms in (8) are neglected (a reasonable assumption for
bubbles with N . 103), the equilibrium radius satisfies
2pReq 1 4s � e2N2�4p´R3

eq, so that in this case

Rb � Req ) v� �

s
�2 2 1
rR3

eq
�s�� 2 2� 2 2pReq� .

(10)
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The pressure at which a mode � . 2 becomes unstable is
p � s�� 2 2���2Req�. For N � 104, s�Req is of the or-
der of 100 mbar. Larger bubbles have even smaller critical
pressures. The vanishing of the frequencies of these modes
indicates that an instability occurs and that the quadratic
approximation for the deformation is no longer valid.
Note, however, that a small negative pressure tends to sta-
bilize the � � 2 mode—this is an alternative to Salomaa
and Williams’ proposal for the stability of the � � 2
mode, based on the assumption that the effective radius
Rb . Req.

In this Letter, we have shown that small negative pres-
sures can stabilize a bubble against dynamic instability,
while positive pressures can drive all ripplon modes un-
stable. Since both negative and positive pressures are
easily achievable experimentally, it will be interesting if
bubbles can be created in a “stable” configuration that can
be visually observed to study these predictions. In the
above considerations we have considered the electrons to
be a 2DEG, ignoring Wigner crystallization.
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FIG. 2 (color). The frequency of ripplon modes � � 1, . . . , 10 is shown as a function of external applied pressure (not vapor
pressure) for N � 1000. The leftmost points of the graphs start at the critical underpressure: for a pressure more negative than this
value, the bubble is unstable against isotropic expansion. As the pressure is increased, more and more modes obtain a vanishing
frequency. On the left the deformations (exaggerated) are shown for a few of the modes.
*Also at Technische Universiteit Eindhoven, Postbus 513,
5600MB Eindhoven, The Netherlands.
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