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Experimental Evidence for Detuning Induced Pattern Selection in Nonlinear Optics
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We give quantitative experimental evidence of the influence of cavity detuning in determining the
pattern selection in a one-dimensional large Fresnel number optical oscillator. The issues of the selection
of the transverse mode close to threshold and the value of the pump parameter at threshold are addressed.
Competition between right and left traveling waves, resulting in a winner takes all dynamics, is also
reported. Experimental results are in quantitative agreement with the theoretical predictions formulated
for a broad class of systems comparable to the one here considered.
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Transverse structuration of light beams is a phenomenon
common to many physical systems and devices in which
radiation is coupled to some nonlinear optical material [1].
A role of central importance in this class of nonlinear op-
tical systems is played by optical oscillators, among which
lasers and optical parametric oscillators (OPO’s) have been
the most extensively studied and technologically imple-
mented. For several of these oscillators, a common mecha-
nism of pattern selection at threshold, based on the balance
between cavity detuning and angular tilt of the selected
wave with respect to the device optical axis, have been
theoretically identified [2–5]. The same mechanism has
been predicted to occur in passive optical systems as well
[6]. In this paper we present an experimental study of
the detuning induced transverse mode selection and of the
corresponding variation of the oscillation threshold in an
optical oscillator with gain provided by a photorefractive
crystal. Close analogies have been established between
photorefractive oscillators and lasers [7] or OPO’s [5], de-
pending on the pumping geometry.

Previous experimental works have reported the qual-
itative dependence on cavity detuning of the transverse
pattern selected in photorefractive oscillators [8–10] or
in vertical cavity surface emitting semiconductor lasers
(VCSEL’s) [11]. Using a VCSEL device, the quantitative
dependence of the pattern scale on the tuning have been
recently measured [12]. To the best of our knowledge,
however, a full quantitative confirmation of the theoretical
predictions about this phenomenon is not yet available.

Our experimental setup is shown in Fig. 1. It con-
sists of a linear optical cavity formed by two end mir-
rors R1 and R2 and two confocal lenses L of focal length
f � 141 mm, situated, respectively, at distances f 1 l
and f from the mrrors, the length l � 5 mm. The mir-
ror reflectivities are 99% for R1 and 90% for R2. Mir-
ror R1 is mounted on a piezo stack PZ interfaced to a
PC, allowing fine control of the cavity length. A slit SL
of 0.12 mm width placed in front of R2 allows the os-
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cillation of cavity field in a plane, thus avoiding the pos-
sible occurrence of several secondary instabilities proper
of the two-dimensional case, theoretically predicted in the
context of laser equations [3] and already observed in
similar experiments [8,11,12]. The active medium is a
5 3 5 3 5 mm3 BaTiO3 crystal C, placed in the common
focal plane of the two lenses, which is pumped by a single
longitudinal and transverse mode Ar1 laser. Videocameras
V1 and V2 visualize, respectively, the planes of slit and of
the crystal. Photodiode PD measures the oscillating signal
spatially integrated intensity.

Let us examine the transverse mode selection imposed
by our cavity. In the limit case l � 0, it is known that
any transverse field distribution is an eigensolution of the
propagation problem [13]. The introduction of l fi 0 lifts
this high degree of degeneracy, leaving as cavity modes
only those field distributions that are plane waves in the re-
gions between each mirror and its nearest lens and spheri-
cal waves in the region between the two lenses, where the
crystal is located.

The relevant dynamical variables of the system are the
electric field Ẽ oscillating in the resonator, and the nonlin-
ear refractive index ñ of the photorefractive crystal. Using
x as transverse coordinate, we describe the evolution of the
system by means of the coupled equations:

FIG. 1. Schematic diagram of the experimental setup.
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where E, n are the slowly varying amplitudes of Ẽ, ñ
around the carrier frequency vc and the detuning V �
vp 2 vc, respectively, vp and Ep are the frequency and
amplitude of the pump field, vc is the frequency of the
cavity longitudinal modes closest to vp, k and g are the
cavity photon decay rate and the inverse of the photore-
fractive response time, g �

vc

n0
, n0 is the unperturbed re-

fractive index, and b is a constant that incorporates the
dependence of the field-index coupling on the crystal and
laser beam parameters and on the geometry of the inter-
action [14–16]. The parameter a in Eq. (1) weights the
effect of diffraction. In the case of free light propagation
in a lensless system, it would be a � c�2k0, where c and
k0 are the velocity and longitudinal wave number of the
propagating field. Since in our cavity, due to the presence
of the pair of confocal lenses, diffraction is effective for a
length 2l over a cavity round trip, the length of which is
2�4f 1 l�, we have to keep a �

c
2k0

l
�4f1l� .

Equations similar to (1) and (2) have been introduced
for a photorefractive oscillator in [7]. As compared to the
case there considered, we are here dealing with a crystal
to which no external electric field is applied. As a con-
sequence, the coupling constants g and b are purely real
in our case. Exactly the same equations, with the addition
of a third one for the population inversion, are used in the
description of a two-level laser, and known in that context
as Maxwell-Bloch equations [17–20].

Linear stability analysis of the “nonlasing solution” E �
n � 0 of Eqs. (1) and (2) can be carried out following ex-
actly what has been done in [2,3,20] for the Maxwell-Bloch
case. The results of this analysis predicts the values of the
coupling strength bg, critical transverse wave number qc,
and lasing frequency vl at the bifurcation threshold, and
are summarized in Table I.

In writing these results we assumed k ¿ g, which is
true for a photorefractive oscillator since k � 108 109,
g � 1021 10 depending on the total illumination upon
the crystal. Until this approximation is not adopted, the
results of linear stability analysis are strictly identical

TABLE I. Results of linear stability analysis of the solution
E � n � 0.

V , 0 V . 0

Threshold �bg�th � kg�1 1
V2

k2 � �bg�th � kg

Critical wave number qc � 0 qc �
q

V

a

Lasing frequency vl � vp 2
g

k V vl � vp
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to those reported in [2,3,20] for a two-level laser. The
basic result predicted is the qualitative and quantita-
tive dependence of the bifurcated state on the sign of
the detuning. Indeed, lasing on a homogeneous state
is expected for V , 0, in which case the oscillating
field does not have the possibility to match the tem-
poral frequency of the pump field by traveling at a
finite angle with respect to the cavity axis; this also
results in an increase of the lasing threshold for in-
creasing jV j. For V . 0, on the contrary, the above
sketched mechanism of frequency tuning by means of
spatial tilting is possible, so that for any value of V

the cavity field will start oscillating at the same threshold
value, have the same temporal frequency as the pump, but
have an V-dependent finite transverse wave number.

In order to compare the predictions of the theory with the
experiment, we performed a series of measurement vary-
ing the cavity length by means of the piezo driven mirror
R1, while keeping fixed all the other parameters. If we de-
note as l0 a value of l for which the cavity resonates with
the pump frequency, and Dl the variation l 2 l0 induced
by the piezo, it follows that the pump-cavity frequency de-
tuning is given by V � vp

Dl
4f1l0

.
A first, rough scan of the cavity length showed that,

when Dl is progressively increased, the field observed
on the slit changes periodically from homogeneous to
patterned at low spatial frequencies, to patterned at higher
spatial frequencies, till eventually switching off and then
restarting from the homogeneous state. This is in quali-
tative agreement with the previously described scenario
of pattern selection, and allows us to identify regions of
negative and positive cavity detuning with respect to a
certain longitudinal mode. For one of these modes then
we set the piezo so that V , 0, and measure the beating
frequency vp 2 vl between the oscillating and pump
field for a set of V values. Since vp 2 vl ~ V ~ Dl,
this measure allows us to define the position of the piezo at
which the cavity is tuned with the pump. Then we scan the
cavity length in a systematic way, letting the system evolve
for about 1 min after each variation of V. We actually
observe homogeneous states for V , 0 and patterned

FIG. 2. Sequence of intensity pattern observed, through V1,
when the detuning is negative (a) �V � 2110 MHz� and posi-
tive (b). In particular, (b) show the patterns, before the com-
petition, from low (upper picture) to high V (370 MHz for the
lower picture).
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states for V . 0, as shown in Fig. 2. There is a further
difference between the two cases, however. While for
V , 0 the pattern readjusts itself in a few seconds after
each parameter variation and then remains stable, the
same is not true for V . 0. In this case any of the
cavity length variations are followed by the formation of
a standing wave at a new wave number, still in the course
of some seconds. After this, on a slightly longer time
scale, we observe competition between the right and left
traveling waves, resulting finally in the survival of only
one of the two at the expenses of the other. It follows
that in the final state the light distribution on the slit is
homogeneous. Pictures displaying the time evolution of
the field observed are shown in Fig. 3.

This competition phenomenon was predicted in [2,3] in
the context of a two-level laser model, and is there to ex-
plain in terms of the fact that, in the interaction between
the two traveling waves, cross saturation is prevalent over
self-saturation. The winner takes all dynamics here ob-
served arises under rather general conditions, and is simi-
lar to the one previously reported in other optical systems
[21,22].

The time scales involved in the experiment are as fol-
lows: the pattern dynamics occurs over seconds; hence it

FIG. 3. (a)–(c) Temporal sequence of patterns observed in the
plane of R2 (left pictures) and of the crystal (right pictures) for
positive detuning. The pictures show the following: (a) the for-
mation of a standing wave; (b) and (c) the competition between
the right and the left traveling waves and the survival of only
one traveling wave; (d) the time evolution of the power for the
right and left traveling waves.
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is much longer than the piezo-induced cavity length varia-
tions, which occur in the milliseconds scale. The pos-
sibly dangerous time scale is that of unwanted cavity length
variations due to environmental fluctuations. This typical
time was measured by standard interferometric technique
to be of the order of tens of minutes in the best conditions
that we then used for the measurements.

Use of the previously described procedure to set the tun-
ing point of the cavity before each complete set of mea-
surements, which takes a few minutes, ensures stability and
reproducibility of the experiment even without the use of
an active stabilization loop for the cavity length. In a range
of V of the order of 200 MHz around V � 0, however,
the observed situation is less clear than reported above and
irregular jump between homogeneous and patterned states
is sometimes observed. This is compatible with the fact
that in this region the two states have similar thresholds.
We believe that the present stability of our experimental
setup does not allow a reliable study of the dynamics in
this regime, hence we do not report measurement relative
to a region of V around the origin.

We measured the dependence of the bifurcating wave
number qc as a function of detuning in the case V . 0.
The measurement was performed by taking images in the
plane of mirror R2 at the time instant for which the stand-
ing wave is observed at its maximum intensity. The results
are shown in Fig. 4, and display good agreement with the
predictions of the linear stability analysis. In particular,
the scaling law qc ~

p
V is verified.

By solving Eqs. (1) and (2) at equilibrium and using
the approximation 1��jEj2 1 jEpj

2� � 1
jEp j2

�1 2
jEj2

jEp j2
�,

valid for jE jø jEp j, we obtain

bgth

bg
� 1 2

jEj2

jEpj2
. (3)

FIG. 4. Dependence of selected wave number qc on cavity de-
tuning V measured for V . 0, in log scale. Dots: experiment;

line: plot of qc �
q

V

a . a, V are evaluated using their defini-
tions and the experimental parameter values given in the text.
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FIG. 5. Normalized threshold coupling as a function of cavity
detuning. Dots: experiment; line: fit of the data with a parabola
for V , 0, a constant for V . 0. See text for details on the fit
function and parameters.

Equation (3) allows us to evaluate the normalized thresh-
old coupling parameter bgth

bg from measurements of jEj2

and jEpj
2. For this purpose the value of the oscillating

intensity jEj2 is measured, for each value of cavity length,
after the transient regime in which competition between
right and left traveling waves is terminated.

The behavior of bgth

bg as a function of cavity detuning is
shown in Fig. 5.

As expected, the threshold is constant for positive
detuning, while it increases parabolically for negative
detuning. Following the results of the linear stability
analysis reported in Table I, the parabola used in order
to estimate the value of k from the experimental data at
V , 0 is

bgth

bg

Ç
V,0

�
bgth

bg

Ç
V.0

µ
1 1

V2

k2

∂
. (4)

The result k � 6.06 3 108 s21 is used to draw the solid
line in Fig. 5, and is within 10% of the value calculated
for this parameter taking into account the cavity losses
measured in the experiment. In conclusion, our results
confirm quantitatively the predictions about the selected
transverse pattern and the oscillation threshold on cavity
detuning.
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