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Observation of Islands of Stability in Soft Wall Atom-Optics Billiards
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We report on numerical and experimental observations of islands of stability induced in a Bunimovich
stadium atom-optics billiard by a soft wall repulsive potential. A deviation from exponential decay of
the survival probability of atoms in an open billiard is observed, and explained by the presence of these
stable islands and a sticky region surrounding them. We also investigate islands in dispersing billiards
with soft walls, and predict a new mechanism for their formation.
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The billiard is one of the most widely studied con-
servative Hamiltonian systems, since it is a very simple
system yet it demonstrates many classical and quantum
mechanical properties of more complex dynamical sys-
tems. In some billiards the dynamics is integrable (e.g.,
in circular, rectangular, or elliptical billiards), whereas
in other cases (e.g., the Sinai billiard, the Bunimovich
stadium) the motion is chaotic and ergodic [1,2]. But
what will happen to such a chaotic and ergodic billiard
when the potential of the boundary is changed into a
smooth function? This question is especially interesting
in the context of understanding the origin of statistical
mechanics, for which the billiard problem is a widely
used paradigm [3]. For example, the Sinai billiard [1]
is mathematically analogous to the motion of two disks
on a two-dimensional torus, a crude approximation for
gas molecules in a chamber, and already this simple
system is proved to be ergodic. Recently, however, it
was proven that if the potential between the two disks is
smooth, as is the actual potential between gas molecules,
there exist elliptic periodic orbits, hence the system
is not ergodic [4]. Smooth potentials that cause the
appearance of elliptic islands inside a chaotic phase-space
have also been recently explored in general scattering
billiards [5,6].

Investigations of the quantum properties of billiards re-
veal Poison level statistics for a smooth potential wall, and
a sharp change into Wigner-Dyson statistics below some
critical “softness parameter.” This transition is accompa-
nied by a dynamical localization-delocalization transition
of the eigenstates [7,8].

From a practical point of view, physically realizable po-
tentials are inherently soft, and the softness of the poten-
tial may result in a mixed phase-space with a hierarchical
structure of islands. This structure greatly affects the trans-
port properties of the system (e.g., induces nonexponential
decay of correlations), since trajectories from the chaotic
part of phase-space are trapped for long times near the
boundary between regular and chaotic motion [3]. As an
important example, these considerations were studied in
the context of ballistic nanostructures, and found to be the
origin of the fractal nature of magnetoconductance fluc-
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tuations in quantum dots [9–13]. However, in these sys-
tems the wall softness is often accompanied by nonideal
effects (such as scattering from impurities) and hence its
role is still controversial.

In this Letter we investigate the influence of a soft poten-
tial wall on an experimental system—the recently realized
atom-optics billiard [14,15]. We show that, by changing
the wall softness, it is possible to induce islands of stabil-
ity in the phase-space of an otherwise chaotic billiard. The
island position is determined experimentally by mapping
a projection of the phase-space of the system. This ability
to precisely control the phase-space structure of an experi-
mental system is unique for the atom-optics billiards.

The billiard that we study is a tilted Bunimovich stadium
(see insets of Fig. 1 below), which is chaotic and ergodic.
It is composed of two semicircles of different radii (64
and 31 mm), connected by two nonparallel straight lines
(192 mm long). When the potential of the wall becomes
softer, a stability region appears around the singular tra-
jectory which connects the points where the big semicircle

FIG. 1. Experimental results for the decay of cold atoms from
a tilted-stadium-shaped atom-optics billiard, with two different
values for the softness parameter: w0 � 14.5 mm �±�, and w0 �
24 mm �1�, and for two different hole positions. (a) The hole is
located inside the big semicircle. The smoothing of the potential
wall causes a growth in stability and a slowing down in the
decay curve. (b) The hole includes the singular point; no effect
for the change in w0 is seen. Also shown are the results of full
numerical simulations, with the experimental parameters (see
text) and no fitting parameters. The dashed line is e2t�tc , the
decay curve for an ideal (hard wall) billiard. The insets show
measured cross sections of the (averaged) intensity of the laser
creating the soft wall billiards, in the beam’s focal plane. The
size of the images is 300 3 300 mm.
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joins the straight lines (see Fig. 2 below). We first present
our experimental results for the decay rate of cold atoms
from billiards with different wall softness, through a small
hole located at different places along the boundary. Subse-
quently, we describe numerical simulations for the dynam-
ics of atoms in the billiard, and show that the structure of
phase-space varies with the wall softness in a way which
explains the experimental results.

As described in detail in [15], the billiard is realized
by the use of a laser beam which is rapidly �100 kHz�
scanned using two perpendicular acousto-optic scanners
(AOSs). The laser is tuned 0.5 nm above the atomic reso-
nance (D2 line of 85Rb), hence applying a repulsive force
on the atoms. By controlling the AOSs, we create the
required billiard shapes which confine the atoms in the
transverse direction. The instantaneous potential is given
by the dipole potential of the laser beam: U�x, y, t� �
U0 exp�22����x 2 x0�t����2 1 ���y 2 y0�t����2��w2

0 �, where the
curve �x0�t�, y0�t�� is the shape of the ideal billiard, along
which the center of the Gaussian laser beam scans. w0
is the laser beam waist and is used as the softness con-
trol parameter. U0 is the potential height, which is kept
constant for different values of w0 by changing the laser
power. Fast enough scanning of the beam results in an
effective time-averaged potential wall [16]. We experi-
mentally control the softness of the billiard’s walls us-
ing a telescope with a variable magnification, which is
located prior to the AOS’s such that w0 can be changed
without affecting the billiard’s size and shape. It was
found [16] that, during the experiment, an atom sponta-
neously scatters less than one photon on average. Fur-
thermore, in the range of atomic densities realized in the
billiard, the mean collision time between atoms is longer
than the experiment time [16], hence the motion of the
atoms between reflections from the walls can be regarded
as strictly ballistic.

The loading scheme of cold atoms into the billiard dif-
fers from that described in [15]. It is intended to achieve
a more monoenergetic ensemble of atoms, with a mean
kinetic energy of about half the billiard potential height,
and a narrow spread around that mean value. Laser cooled
85Rb atoms are loaded from a magneto-optical trap into a
0.5 mK deep red-detuned one-dimensional optical lattice
with a beam waist of 240 mm. The atoms are then trans-
ferred from the lattice into the billiard, which is displaced
by D � 250 mm, by pushing them with a pulse of a strong
on-resonance beam which is perpendicular to the billiard
beams. Simultaneously with the pushing, the lattice beams
are switched off in a time constant of �400 ms, which is
adiabatic in the longitudinal direction, resulting in further
cooling in that direction [17]. In this way an atomic cloud
is formed with an rms velocity spread of �6.3yrec in the ra-
dial direction, ,2.1yrec in the longitudinal direction, and
moving with an average velocity of y � 18yrec towards
the billiard (yrec is the atom’s recoil velocity, �6 mm�s for
85Rb). Further reduction of the radial velocity spread, and
especially a decrease in the number of very slow atoms,
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is achieved by capturing only a central velocity group of
atoms in the billiard, which is turned on at the proper
time �t � D�y � 2.3 ms�. Typically, 3 3 105 atoms are
loaded into the billiard. The resulting quasi-monoenergetic
ensemble of atoms has a well-defined decay time through
the hole, given by tc � pA�yL, where A is the billiard’s
area and L is the length of the hole [18]. The cooling in
the longitudinal direction ensures that the system can be
approximated as a two-dimensional system [19]. We al-
low additional 65 ms of collisions with the billiard’s walls,
such that the direction of the transverse velocity is ran-
domized, and then open a hole in the billiard’s boundary,
through which atoms can escape. The hole is produced
by switching off one of the AOSs for �1 ms every scan
cycle, synchronously with the scan. The number of atoms
remaining in the trap is measured using fluorescence detec-
tion [16]. The ratio of the number of trapped atoms with
and without the hole, as a function of time, is the main
data of our experiments. Note that for systems with mixed
phase-space the decay depends on the position of the hole.
If the hole does not include trajectories which belong to a
stable island and its vicinity, these trajectories are trapped
for long times, and a strong deviation from exponential
decay is observed. On the other hand, if the hole contains
such trajectories, they will decay fast and the rest of the
atoms (the majority) will decay exponentially.

In Fig. 1, experimental results for the decay from a tilted
stadium with two different values of the softness parameter
(w0 � 14.5 mm and w0 � 24 mm) are presented. It can
be seen that, when the hole is located entirely inside the
big semicircle [Fig. 1(a)], the soft wall causes an increased
stability and a slowing down in the decay curve. When the
hole includes the singular point where the semicircle meets
the straight line [Fig. 1(b)], no effect for the change in w0

is seen. We show below that these results can be explained
by the formation of a stable island around the singular
trajectory, and a sticky region around it. Figure 1 also
includes the results of numerical simulations, which in-
clude the three-dimensional atomic and laser beam distri-
butions, atomic velocity spread, laser beam scanning and
gravity, and no fitting parameters. As can be seen, there is
very good agreement between the simulated and measured
decay curves. Similar decay measurements and simula-
tions for a circular atom-optics billiard showed no depen-
dence on w0 in the range 14.5 24 mm, and no dependence
on the hole position.

To understand these observations, it is useful to look at
how the phase-space of the system changes with changing
w0. In Fig. 2, results of numerical simulations for classical
trajectories of Rb atoms inside the tilted-stadium billiard
are shown. For clarity, we assume a monoenergetic en-
semble (with y � 20yrec), a two-dimensional system, and
no gravity. The dimensions of the billiard are equal to the
experimental ones. Phase-space information is presented
using a Poincaré surface of section, showing yx versus x at
every trajectory intersection with the billiard’s symmetry
axis �y � 0�, provided that yy . 0.
274101-2
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FIG. 2 (color). Poincaré surface of section for monoenergetic
atoms confined in a tilted-stadium atom-optics billiard with
parameters specified in text, and three different values of
the softness parameter w0. Trajectories inside an island are
marked in blue, sticky trajectories [21] are marked in red,
and chaotic trajectories are marked in green. (a) w0 � 18 mm.
A small elliptic island appears close to the trajectory which
connects the two singular points. Upper inset: a trajectory
in the island. Lower inset: a typical chaotic trajectory in
this billiard. (b) w0 � 27 mm. Three additional islands
appear around the central one, and correspond to the periodic
trajectory shown in the upper inset. Around these islands there
is a large area of stickiness, where the trajectories spend a
long time (see trajectory in lower inset). (c) w0 � 30 mm.
The three previous islands merge into one large elliptic island
(see trajectory in upper inset), with some stickiness around it
(lower inset).
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In Fig. 2(a), the w0 � 18 mm case is shown. A small
elliptic island (marked in blue) appears around the trajec-
tory which connects the two singular points, as can also
be seen from the upper inset, which shows a trajectory
in the island [20]. In the lower inset, a typical chaotic
trajectory is shown. For w0 , 12 mm, no islands with
area larger than 1024 of the total phase-space (the reso-
lution of the simulations) were observed. In general, the
island size increases with the increase of w0, as can be seen
from Figs. 2(b) and 2(c) which correspond to w0 � 27
and 30 mm, respectively. For w0 � 27 mm, three addi-
tional islands (blue) appear around the central one, and
correspond to the periodic trajectory shown in the upper
inset. Around these islands there is a large area of “sticki-
ness” (marked in red [21]), where the trajectories spend a
long time. Such a “sticky” trajectory is presented in the
lower inset of Fig. 2(b). The exact structure of the island
and its vicinity depends on the softness parameter w0 in a
sensitive way, as can be seen from the w0 � 30 mm case
[Fig. 2(c)], where the three previous islands merged with
the central one into one big elliptic island, with some stick-
iness around it.

We also performed similar numerical simulations for
totally scattering billiards. As predicted in [6], an island is
formed around a singular orbit, periodic in the ideal billiard
and tangent to (or parallel to the tangent of) one of the
billiard’s arcs. A second type of island, for which we are
not aware of a theoretical treatment, is trajectories which
go near one (or more) of the corners of the billiard. In all
three cases the island appears around a singular periodic
orbit in a limiting ideal billiard, as follows from [6].

For the tilted stadium, a simple model can explain the
formation of the island. For the singular periodic trajec-
tory, the curvature of the ideal billiard at the reflection
points is not well defined: it is R21 (the radius of the big
semicircle) when approaching the singular point from the
semicircle side, and 0 when approaching from the side of
the straight line. When the walls are softened, the billiard
can be approximated as the potential contour line which
has a height equal to the kinetic energy of the particles.
The curvature in the vicinity of the singular points will
now vary smoothly from 0 to R21. As a result, the sum
of the radius of curvature in the two reflection points will
be larger than the distance between them �2R�, a condition
which ensures linear stability of the periodic orbit [22].
However, this is only a partial explanation, since in a soft
wall billiard the reflection point depends on the angle of
reflection, and hence is not always from the same contour
line. In a numerical simulation for a hard wall stadium
with a shape of the above contour, the decay was indeed
slower than from the ideal billiard, but substantially faster
than from the soft wall billiard, indicating a combined ef-
fect of the stable resonator at the reflection points caused
by smoothing the singularity, and of the soft wall itself.

In Fig. 3, the measured fraction of remaining atoms at
5tc �� 42.5 ms� after a hole is opened in the big semi-
circle is plotted as a function of the softness parameter, w0,
274101-3
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FIG. 3. Fraction of remaining atoms at 5tc after the hole is
open, as a function of the softness parameter �w0�, for a hole in
the big semicircle. �1�: experimental results, �¶�: numerical
simulation. The dashed line is e25, the expected value for
small w0 . Also shown are values for the island ��� and island
1 stickiness �≤� sizes as a fraction of the phase-space area,
calculated from the two-dimensional phase-space simulations.
Lines connecting the symbols are added to guide the eye.

together with the results of numerical simulations. A very
good agreement exists between the decay simulations and
the measured data, and both converge to the expected value
of e25 for small w0. To intuitively understand the origin of
the increased stability, the results of the two-dimensional
phase-space simulations for the island and island 1 sticki-
ness size (as a fraction of phase-space) [21] are also pre-
sented in the figure. These simulations reveal that the size
of the island 1 stickiness grows monotonically with w0, in
a similar way to the decay results. The island size itself is
much smaller, and has a nonmonotonic dependence on w0.
These facts suggest that the remaining atoms in the experi-
ment, at 5tc , are mainly due to stickiness and demonstrate
the important influence of the stickiness on the dynamics
of the billiard.

In conclusion, numerical and experimental observations
of the formation of islands of stability in a Bunimovich
stadium with soft walls were presented. The island po-
sition was located experimentally by mapping a projec-
tion of the phase-space of the system. The ability to
control the phase-space structure can be used, for example,
to construct experimentally a “Maxwell’s demon” as sug-
gested in [23], by carefully designing the phase-space
structure of two contacting billiards. The experimental
control of phase-space structure will enable one to also ex-
plore mesoscopic or quantum effects in chaotic and mixed
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phase-space systems, for example, by placing a Bose-
Einstein condensate inside the optical billiard.
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