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We study a (1 + 1)-dimensional A¢* model with a light-cone zero mode and constant external source
to describe spontaneous symmetry breaking. In the broken phase, we find degenerate vacua and discuss
their stability based on effective-potential analysis. The vacuum triviality is spurious in the broken phase
because these states have lower energy than Fock vacuum. Our results are based on the variational

principle.
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Light-cone quantization [1] has been studied to clar-
ify nonperturbative aspects of field theories [2] and used
to provide nonperturbative formulation of M theory [3].
This framework simplifies dynamics of quantum field the-
ories since it prohibits vacuum diagrams kinematically [4].
It has also a possibility of calculating wave functions of
physical states in a nonperturbative manner. Because of
these preferable properties, we hope for this framework to
play a complementary role in lattice theories.

DLCQ (discrete light-cone quantization) is the most
well-defined treatment of light-cone quantization, which
enables a clear separation of the zero mode [5-7]. It
has been believed that the true vacuum is trivial and only
the zero mode is responsible for spontaneous symmetry
breaking (SSB) in scalar field theories [5,8]. There are
some studies that rely on a combination of constrained
zero modes and trivial vacuum [9]. The vacuum triviality,
however, results from an assumption that normal-ordered
Hamiltonians are positive semidefinite. In this Letter, we
show that this assumption is not always true. We include a
zero mode and external source in analytic variational cal-
culations to show the existence of nontrivial vacuum with
lower energy than trivial Fock vacuum. Our results are
based on previous works on zero-mode singularity [8] and
quantum solitons [10,11] in DLCQ. We examine a possi-
bility that zero modes reproduce SSB, which has not been
considered in Refs. [10,11].

In order to define an effective potential, we consider
the generating functional of Green’s functions, W[J] =
—iInZ[J]. We can express it using a Hamiltonian H[J]
when the external source is time independent J(x) = J(x)
[10,12],

H[J]10;) = w[J]10,),
L
HIJ] = H - f dx J(x)(x),

where w[J] = —W[J]/T is energy of the ground state
|0y). T is the time difference between the initial and
final states. If we are interested just in the ground state
(vacuum), we can consider an effective potential to reduce
the problem into a simpler one. It is defined as a Legendre
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transform V(¢g) = w(J) + Jog = (0;|H|0;)/2L with
a constant source J(x) = J and vacuum-energy density
w(J) = w[J]/2L. A vacuum expectation value (VEV) of
a zero mode is given by oo = —dw(J)/dJ = {0;|d0l0,).
We can calculate the effective potential V(¢g) if the
energy and the wave function of the ground state are
known. Our purpose is to identify the true vacuum in
the (I + 1)-dimensional A¢* model with a double-well
classical potential. We perform variational calculations
for the following normal-ordered Hamiltonian:
%:qb“:—]:qb:).

H(J) = f_LL dx~ <—“72 : 2 A

Hereafter, we designate the space coordinate x~ by x. The
field operator is decomposed into zero and nonzero modes
d(x) = ¢do + ¢(x), where (0)y = fL_L dx O(x)/2L. In
DLCQ with periodic boundary conditions, the zero mode
¢y is constrained [5],

qb2:+

PPl = —p*: ¢ : +% (=T =0. (2

Operator ordering has been chosen so that it satisfies
dw(J)/dJ = —¢q. It is the consistency condition to be
satisfied between the Hamiltonian (1) and the zero-mode
constraint (2). We discuss it later in Eq. (24). The zero
mode is an operator functional of the nonzero mode

- > 1 - -
= E ——— (aye P* 4+ atePniv), 3
¢(X) “ \/m(a 4 ane ) ( )

where [a,al] = 8,,, and a,|0g) =0. We trun-
cate the system by introducing the one-coherent state
|3y = eznzl(@”a’f’_%‘ﬁﬁ") Op). It provides useful formulas
anl®@) = @4|®) and (@|: O[¢]: @) = O[&], where
o(x) =(@lo(x)|d) = @o + &(x). Our variational
parameter is &(x).

We take the continuum limit with Pt = #M /L fixed,
where M is called the harmonic resolution. We include this
constraint on P* in the Hamiltonian using the Lagrange’s
undetermined multiplier.
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[ dp\*  wM
Lelel(@) 5 e
2 A
- %902 kA Jso},

where w(J) = E/2L. Equation (2) and the stationary con-
dition for (4) give the following coupled equations for the
zero and nonzero modes:

2 Ao
THeo T e =T, &)
4> 2 A 2, A s
-2 +uie + et + —@>=0, (6
dez M T o 0 ¢ ? (6)
where u2 = —u? + A¢d/2. We have the following zero-

mode solutions to (5) when J = 0 (see Fig. 1):

fow?
- 7

The system defined in a finite box can describe SSB if the
vanishing J limit is taken after all calculations. We should
choose @9 = *v but not ¢g = 0 as physical solutions
to (5) when J = 0, because the solution ¢, = 0 is not
connected continuously to expectation values for large J #
0. The region |¢@g| < v/+/3 is unphysical.

If one attempts to see vacuum physics without introduc-
ing an external source, wrong solutions may be obtained.
The symmetric phase would be safe without an external
source, but the broken phase is not. We explain how the
true vacuum solution appears by paying attention to the
effects of the zero mode and the external source on

@9 =0, *v, v

®o

(—2u2v/3v/3, v/V3) [

0N | J
....... | (2120/3V/3, -v/V/3)

FIG. 1. Functional relationship (5) between ¢, and J is shown
when Fock space is truncated with the one-coherent state ap-
proximation. The region |¢o| < v/ /3 is unstable [see discus-
sions given below Eq. (25)]. When || = v, the zero mode
@ increases monotonously, d¢o/dJ > 0.
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the ground state. We also discuss vacuum stability in
Eq. (25) based on the effective potential.

Solutions to Eq. (6) must satisfy the following two
conditions simultaneously: (i) The solution @ to (6)
and the nth derivative " = d"®/dx" must be peri-
odic at the boundaries x = *=L: @™ (=L) = @™ (L),
n=20,1,2,.... (ii)) The solution @ to (6) must be the
nonzero mode: [@(x)]y = fL_L dx &(x)/2L = 0.

For convenience, let us regard x as time and consider
the following dummy Hamiltonian # that reproduces the
equation of motion (6):

H = 3097 + V(@) @®)
where V is a dummy potential
1 (2 A A
V(g =——<—°”2+— >+ = ¢t
(@) gl & T g e
2
M A

—7¢%+I¢6‘>~ )

We first solve (6) especially when J = 0 and ¢o = 0.
As mentioned before, this gives physically unacceptable
solutions. However, these solutions are technically helpful
for the purpose of calculating the energy and the wave
function of the true degenerate vacua with nonzero VEVs
as shown later. When J = 0 and ¢y = 0, Eq. (6) reduces
to

’¢ 1< 2 A 3)
— —(-u2p + 2¢ 1
il g\ HET e (10)

and the dummy potential 'V is
- 1 /Lz ") A ~4>
= —— -2+ = &*).
V(@) 2,8< AR (1)

When the parameter (8 is positive, the dummy poten-
tial V(@) is bounded from above [see Fig. 2(a)]. From

FIG. 2. The dummy potential 'V is drawn as a function of @
when ¢¢ = 0: (a) positive 8 and (b) negative (.
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condition (i), the motion of a particle must be periodic.
Namely, the particle must reside between the two maxi-
mums of the dummy potential. If condition (i) is satisfied,
condition (ii) is also satisfied since the particle oscillates
around the origin in the symmetric dummy potential. The

solution to (10) is
B 12M2k2 1/2
Psn(x) = [m} sn(ag,x, k), (12)

where sn is a Jacobian elliptic function and 0 = k = 1
[11]. The values of the parameters a5, and k are deter-
mined so that the solution (12) satisfies both conditions (i)
and (ii); k = 0 gives @(x) = 0 and M = 0, which corre-
spond to trivial Fock vacuum with ¢9 = 0 and P~ = 0.
k = 1is notacceptable since it gives ¢ ~ tanh(ax), which
is an odd function and cannot satisfy the periodicity con-
dition (i). When 0 < k < 1, we have ay, = 2NK(k)/L
[N is a natural number and K (k) is the complete elliptic
integral of the first kind] from the periodicity condition (i)
and it satisfies condition (ii). In this case, the solution (12)
is acceptable and gives the following energy and harmonic
resolution:

Eq  6u'k? 576N? ubk*12 (k) 13)
2L A2+ 12 w2k + 1M
N w?k?I, (k)K (k
_ 96N pu kI (k)K (k) (14)

A2+ 1)

1
= [ i =ma—ep). as

In the limit kK — 1 with N = 1, the energy (13) takes
the minimum value, and the harmonic resolution goes to
infinity since K (k) diverges at k = 1 giving the continuum
limit M — . This is the solution given in Ref. [11].
When the parameter B is negative, condition (i) is au-
tomatically satisfied since the dummy potential V(@) is
bounded from below and a particle oscillates necessar-
ily with a fixed period [see Fig. 2(b)]. Equation (10) has
two types of solutions in this case. We can also ex-
press them using Jacobian elliptic functions cn(x, k) and
dn(x,k). When a particle oscillates around the origin, a

solution is
B 12M2k2 1/2
Pen(x) = [m} en(acyx, k). (16)

The solution (16) is acceptable as an exited state since it
satisfies conditions (i) and (ii) simultaneously with higher
energy than (12). When a particle oscillates around one of
the minimums of the dummy potential, solutions are

B N
$an (%) _[/\(2 )
The solutions (17) are not acceptable since they cannot
satisfy condition (ii).

When J = 0 and ¢y = 0, the candidate solution for the
ground state is (12) with as, = 2NK(k)/L and k — 1 de-
rived for positive 8 since it gives the lowest energy. How-
ever, we discard the solution (12) since the state formed by

271601-3

1/2
} dn(agnx, k). 17)

it cannot be connected to solutions for the nonzero external
source J # 0. In addition, mass squared goes to negative
infinity P#P,, — —o°in the continuum limit M — o since
the first term of the energy (13) is nonzero and negative.
This is the reason why all past calculations have not been
successful in calculating mass squared stably in the broken
phase [10].

When the limit J — 0 is taken starting from a suf-
ficiently large J, an effective potential chooses one of
¢@o = *v depending on the sign of J. Nonzero values
of J resolve the degeneracy of the two vacua, which is re-
stored in the limit J — 0. In this case, conditions (i) and
(ii) select dn-type oscillation around the minimum @ = 0
of the dummy potential. The situation is completely differ-
ent from the ¢y = 0 case. We obtain the following dummy
potential by substituting ¢y = v into (9) (it is enough to
consider one of the two degenerate vacua ¢og = *v):

8 1 s A A, 3ut
V(g) = _E<M2€02 e+ et - %)
(18)

This is the case when the nonzero mode is shifted with
@ — @ + v in (11). Therefore, we obtain four pos-
sible oscillations by shifting the solutions (12), (16), and
(17) with @ — @ — v. The first is an sn-type oscilla-

tion around $ = —v. The second is a cn-type oscillation
around = —v. The third is a dn-type oscillation around
@ = —2v. However, all of them are unacceptable since

they cannot satisfy condition (ii). The following dn-type
solution is a physically acceptable oscillation:
3 1242
0= | ot
which oscillates around the origin = 0 and can satisfy

conditions (i) and (ii) simultaneously. Its energy and total
momentum are

E _ 6utk* — 1)
2L~ A2 — k)2
M 24u’l, (k)

Pt = =
L -k ®

1/2
} dn(ax, k) — v, (19)

144513 (k
_ 1% dn( ) , (20)
TA2(2 — k2)3M

2D

1
ww= [ apfo= -1,

n(aL,k)
where 0 < k =< 1; k = 0 is not acceptable since &(x) =
0 gives @9 = (Og| : ¢o : |Or) = O that contradicts ¢g =
v. When 0 < k < 1, there exists no value of the parame-
ter a = NK(k)/L that can satisfy condition (ii). When
k = 1, we have

V2
p(x) =v|———— —1]. 22
¢ (x) v[ cosh(ax) } (22)
Condition (ii) requires the following relation to hold:
V2gd(aL) — aL = 0, (23)

where gd is the Gudermann function. This has a solution
alL ~ 1.72. In the continuum limit L — oo, we have a —

271601-3



VOLUME 87, NUMBER 27

PHYSICAL REVIEW LETTERS

31 DECEMBER 2001

0 which gives zero total momentum P* = 0. Since the
energy (20) is negative and lower than Fock vacuum in the
continuum limit, we identify it as one of the true vacua.

In order to check the consistency of the operator order-
ing between the Hamiltonian (1) and the zero-mode con-
straint (2), we examine the first derivative of w(J) with
respect to J using (5) and (6).

A Z[Lﬂ[d_i’(bJri ~2+i~3>
eo= | orlay (et T+ o

deo .. }
+ 20 g

T, (@]
P+

n()

Since the parameters P and L are given by hand inde-
pendent of J, we obtain the desired consistency condition
dw/dJ = —¢o. We can use this relation to discuss vac-
uum stability also. We have the following relation from the
definition of the effective potential V (¢q) = w(J) + J¢o:

d*v dJ
5= (25)
doj do

The state given by (22) is stable and hence can be regarded
as one of the true vacua since (25) is positive when ¢g =
v. On the other hand, the state given by (12) is unstable
since (25) is negative when ¢¢ = 0. In —v/J3 < ¢y <
v/+/3, energy decreases as J increases. If ¢ or J is not
introduced, one cannot observe this instability of the state
(12) since V(¢p) and hence (25) are not available.

We conclude that there exist nontrivial degenerate vacua
other than Fock vacuum in the (I + 1)-dimensional A¢*
model with a double-well classical potential. We have
shown stability of the obtained vacua based on the
effective-potential analysis. The essential point of our
analysis is introduction of a zero mode and an external
source.

In general, there are singlet and nonsinglet sectors of
Z, symmetry. One-coherent state |@) is a mixed state of
both the sectors. We have shown that there exist nonsin-
glet vacua with lower energy than Fock vacuum when the
classical potential has a double-well shape. The mixing
of the singlet and nonsinglet sectors is a consequence of
the introduction of an explicitly symmetry-breaking inter-
action J ¢p¢ in the Hamiltonian (1).

The issues of critical exponents remain still open until
quantitatively reliable calculations are done. We should
perform variational calculations without assuming vacuum
triviality also in the case when a classical potential is
convex. However, we need to interpret the difference
among normal (ours) and other operator orderings (such
as Weyl ordering) concerning the origin of VEVs of zero
modes. When the Hamiltonian and zero-mode constraint
are normal ordered, trivial Fock vacuum gives just

271601-4

(Og| : H : |0Og) = 0 and {Og| : ¢¢ : |0r) = O (i.e., there is
no SSB if vacuum triviality is assumed for normal-ordered
operators).

Finally, we point out the importance of small momen-
tum components near the zero mode. The reason why
the true-vacuum solution (22) gives P* = 0 in the con-
tinuum limit L — o is that its slowly changing configu-
ration is mainly composed of small momenta. This is an
extended description of the accumulating point discussed
before in Ref. [13]. On the other hand, the solution (12)
with ag, = 2NK(k)/L and k — 1 needs large momentum
components to describe its singular behavior at x = 0 and
*L, which gives infinite harmonic resolution M — o,

We express sincere thanks to K. Yamawaki for valuable
discussions. T.S. thanks K. Harada and K. Yazaki for
helpful comments. T. S. was supported by the Grant-in-Aid
for Scientific Research Fellowship, No. 11000480.

[1] P. A.M. Dirac, Rev. Mod. Phys. 21, 392 (1949).

[2] K.G. Wilson, T.S. Walhout, A. Harindranath, W.M.
Zhang, R.J. Perry, and S.D. Glazek, Phys. Rev. D 49,
6720 (1994); K. Yamawaki, in New Non-Perturbative
Methods and Quantization on the Light Cone, Les Houches
School, 1997, edited by P. Grangé, H. C. Pauli, A. Neveu,
S. Pinsky, and E. Werner (Springer, Berlin, New York,
EDP Sciences, Les Ulis, France, Cambridge, MA, 1998),
pp- 301-309; S.J. Brodsky, H. C. Pauli, and S.S. Pinsky,
Phys. Rep. 301, 299-486 (1998).

[3] T. Banks, W. Fischler, S.H. Shenker, and L.
Susskind, Phys. Rev. D 55, 5112 (1997); L. Susskind,
hep-th/9704080.

[4] H. Leutwyler, J. R. Klauder, and L. Streit, Nuovo Cimento
A 66, 536 (1970).

[5] T. Maskawa and K. Yamawaki, Prog. Theor. Phys. 56, 270
(1976).

[6] A. Casher, Phys. Rev. D 14, 452 (1976).

[7] H.C. Pauli and S.J. Brodsky, Phys. Rev. D 32, 1993
(1985); 32, 2001 (1985); T. Eller, H. C. Pauli, and S.]J.
Brodsky, Phys. Rev. D 35, 1493 (1987); T. Eller and H. C.
Pauli, Z. Phys. C 42, 59 (1989).

[8] Y. Kim, S. Tsujimaru, and K. Yamawaki, Phys. Rev. Lett.
74, 4771 (1995); S. Tsujimaru and K. Yamawaki, Phys.
Rev. D 57, 4942 (1998).

[9] T. Heinzl, C. Stern, E. Werner, and B. Zellermann, Z. Phys.
C 72, 353 (1996); D. G. Robertson, Phys. Rev. D 47, 2549
(1993); C.M. Bender, S.S. Pinsky, and B. van de Sande,
Phys. Rev. D 48, 816 (1993); S.S. Pinsky and B. van de
Sande, Phys. Rev. D 49, 2001 (1994); S. S. Pinsky, B. van
de Sande, and J. R. Hiller, Phys. Rev. D 51, 726 (1995).

[10] T. Sugihara, Phys. Rev. D 57, 7373 (1998).

[11] J.S. Rozowsky and C. B. Thorn, Phys. Rev. Lett. 85, 1614
(2000).

[12] S. Coleman, Aspects of Symmetry (Cambridge University
Press, Cambridge, United Kingdom, 1985).

[13] N. Nakanishi and K. Yamawaki, Nucl. Phys. B122, 15
(1977).

271601-4



