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3D Grazing Collision of Two Black Holes
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We present results for two colliding black holes (BHs), with angular momentum, spin, and unequal
mass. For the first time, gravitational waveforms are computed for a grazing collision from a full 3D
numerical evolution. The collision can be followed through the merger to form a single BH, and through
part of the ringdown period of the final BH. The apparent horizon is tracked and studied, and physical
parameters, such as the mass of the final BH, are computed. The total energy radiated in gravitational
waves is shown to be consistent with the total initial mass of the spacetime and the apparent horizon
mass of the final BH.
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The collision of two black holes (BHs) is considered by
many researchers to be a primary candidate for generat-
ing detectable gravitational waves. As the first generation
of gravitational wave detectors [1], with enough sensitiv-
ity to potentially detect waves, is coming online for the
first time next year, the urgency of providing theoretical
information needed not only to interpret, but also to detect
the waves, is very high. However, even in axisymmetry,
the problem has proven to be extremely difficult, requir-
ing nearly 20 years to solve in even limited cases (e.g.,
[2–5]). In full, 3D progress has been rather slow due to
many factors, including (but not limited to) unexpected
numerical instabilities, limited computer power, and the
difficulties of dealing with spacetime singularities inside
BHs. The first true 3D simulation of spinning and mov-
ing BHs was performed in [6]. In [6], the two BHs start
out close to each other, much closer than the separation
for the last stable orbit of a particle in the Schwarzschild
spacetime, and the evolution proceeds through parts of the
plunge and ring-down phase of a “grazing collision” within
a very short time interval. The spacetime singularities are
dealt with by a particular choice of coordinates, singular-
ity avoiding slicing and vanishing shift. BH excision [7,8]
has allowed improvements in the treatment of the space-
time singularities to the extent that highly accurate simu-
lations of single BHs can be carried out [9–12] and recent
applications to the grazing collision of BHs show promise
[13]. One of the key limiting factors in the existing two
approaches to the grazing collision is the achievable evolu-
tion time for which useful numerical data can be obtained,
which due to numerical problems has been limited to 7M
in [6], and to about 9M–15M in [13]. Here time is mea-
sured in units of the total Arnowitt-Deser-Misner (ADM)
mass M of the system as opposed to using the bare mass
m of one of the BHs.

In this paper we consider singularity avoiding slic-
ing as in [6]. We combine the application of a series
of recently developed physics analysis tools and tech-
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niques with significant progress made in overcoming the
problems mentioned above. Early, preliminary results
from this series of simulations have been presented in
[14,15], but we now provide the first detailed physics
analysis.

We compute BH initial data of the puncture type [16],
corresponding to two BHs in orbit about each other, with
unequal masses, linear momentum, and individual spins
on each BH. The construction of such data sets, which
involves solving the nonlinear elliptic Hamiltonian con-
straint equation numerically, is described in [16]. A de-
tailed survey of a sequence of such data sets including
various physical properties is discussed in [17]. In this
paper we choose punctures for each BH on the y axis at
61.5m, masses m1 � 1.5m and m2 � m, linear momenta
P1,2 � �62, 0, 0�m, and spins S1 � �21�2, 0, 21�2�m2

and S2 � �0, 1, 21�m2. Note that the linear momentum
is perpendicular to the line connecting the BHs, equal but
opposite for a vanishing net linear momentum, and that the
spins are somewhat arbitrarily chosen to obtain a general
configuration. For this case, an asymptotic estimate for the
initial ADM mass is M � 3.22m. Solving the Hamiltonian
constraint leads to a larger value than the Brill-Lindquist
mass of m1 1 m2 � 2.5m. The angular momentum for
puncture data is given by (independent of the solution
to the Hamiltonian constraint) �J � 2 �d1 3 �P1 1 �S1 1 �S2,
where �d1 is the vector from the origin to the first puncture.
The total angular momentum is therefore J � 7.58m2,
which corresponds to an angular momentum parameter of
a�M � J�M2 � 0.73. In this configuration the individ-
ual spins increase the total angular momentum, so we call
it the “high-J” case. The following discussion refers ex-
clusively to this one data point in parameter space, ex-
cept that when discussing waveforms below we compare
the high-J case with data where the individual spins van-
ish (medium-J, M � 3.00m, J � 6.00m2, a�M � 0.67)
or where S1 ! 2S1 and S2 ! 2S2 (low-J, M � 3.07m,
J � 4.64m2, a�M � 0.49).
© 2001 The American Physical Society 271103-1
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FIG. 1. Root-mean-square value of the Hamiltonian constraint
on a centered cube with outer boundary at 38m and a gridspacing
of 0.30m, 0.24m, 0.20m. The curves are rescaled so that they
coincide for second order convergence. For early times (see
inset) convergence is second order and better than second order
at later times.

This initial data is evolved with evolution equations of
the Baumgarte-Shapiro Shibata-Nakamura family [18,19],
using the implementation that we developed and tested for
the collapse of strong gravitational waves to BHs in [20].
We discuss some reasons why certain variable choices and
certain combinations of the evolution equations with the
constraints can lead to more stable evolutions than the tra-
ditional ADM system in [21], and we do observe a signifi-
cant improvement in numerical stability in practice. We
use radiative boundary conditions for the outer boundary.
The coordinate singularities at the BH punctures are han-
dled as in [6,9] by a time independent conformal factor.
We solve the maximal slicing condition on the initial slice
and then use the so-called 1 1 log slicing (as in [9]) for
the lapse and vanishing shift during the evolutions.

The computer simulations were carried out on a 3D
Cartesian grid. On a 256 processor SGI/Cray Origin 2000
machine at NCSA we were able to run simulations of 3873,
which take roughly 100 GB of memory (to our knowledge
this makes them the largest production numerical relativity
simulations to date). A good balance between resolution
in the inner region and distance to the outer grid bound-
ary was achieved for a grid spacing of 0.2m, which puts
the outer boundary for a centered cube at about 38m or
about 12M. All said, the combination of resolution, outer
boundary location and treatment, coordinate choice, evo-
lution system, and puncture method for the BHs allows
evolution times past 30M. The lowest quasinormal mode
of the ring-down phase of the final rapid Kerr BH has a
period of about 13M�17M for Schwarzschild), therefore
evolution times of 30M or more are a prerequisite for wave
extraction, which was not possible in [6,13]. The simula-
tions do not crash at that time, but as we will discuss now,
the numerical data become degraded due to effects of the
outer boundary and due to grid stretching (i.e., large met-
ric gradients) in the vicinity of the BHs. Figure 1 shows
the root-mean-square value of the Hamiltonian constraint
over the entire grid for different resolutions but same outer
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FIG. 2. Waveform at resolutions 0.30m, 0.24m, and 0.20m.

boundary location. The inset shows clean global second
order convergence up to about 6M. A local analysis shows
that there are large contributions to this average from
inside the horizon, and that smaller errors intrude from the
outer boundary, but the code is convergent beyond 30M.

Since a main result of the simulations is waveforms, the
most relevant measure and often most stringent criterion
for numerical quality is convergence in the waveforms.
We use the gauge invariant waveform extraction technique,
developed originally by Abrahams [22] and applied to the
3D case in [23], to extract gravitational wave modes of
arbitrary �, m. As shown in [23,24], this technique can be
used on numerically evolved 3D distorted BH spacetimes
to produce very accurate waveforms away from the BH,
even if errors are rather large near the horizon. Here,
we extract, for example, the nonaxisymmetric � � m � 2
mode, expected to be one of the most important modes
in binary BH coalescence [25]. Figure 2 shows for three
resolutions the Zerilli function c

even
22 �t� extracted at R �

7.8M. Up to a time t � 30M the dependence on resolution
is rather small, which suggests that the resolution reaches
the convergent regime.

In Fig. 3, we show a sequence of extracted waves at dif-
ferent radii, obtained by integration over the corresponding
coordinate spheres, as a function of time. The outermost
detectors show late time problems due to spurious signals
propagating in from the outer boundary, while the inner
detectors are affected by the closeness to the strong field
region. Note that these methods assume a Schwarzschild
background, but they can be applied on a rotating BH, the
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FIG. 3. Mode l � m � 2 of the even Zerilli function extracted
for different radii as a function of time. A wave that develops
after the BHs collide is propagating out.
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FIG. 4. A fit to the quasinormal mode determined by M and
a shows good agreement in the frequency and decay rate at late
times for a resolution of 0.2m.

primary effect being an offset depending on the rotation
parameter a [26]. In Fig. 4, we show the � � m � 2 even
parity wave for the detector at R � 7.8M and a match to
the corresponding lowest quasinormal mode plus the first
overtone. The values for M and a determine the quasi-
normal frequency, while the amplitude and the offset in
time are fitted. The observed period is 13M, which is con-
sistent with a final distorted Kerr BH with a�M � 0.7.
Gravitational waves carry away energy and angular mo-
mentum from the BHs. For the energy, we have dE�dt �
�1�32p�

P
`
��2

P�
m�2� ��dc

even
�m �dt�2 1 �codd

�m �2�. Integrat-
ing the � � 2, 3, 4 modes up to t � 35M, we find DE �
0.032m � 1.0%M. For the medium and low-J data we
find 1.2% and 0.9%, respectively.

One of the potential insights from the detection of grav-
itational waves is the determination of the orientation of
spins in relation to the orbital motion. Figure 5 shows the
wave signature for the high, medium, and low-J data. For
vanishing spins (medium J), we observe that c

odd
20 is zero

within numerical accuracy, while c
odd
22 shows an oscilla-

tion with amplitude 3 3 1025.
Note that certain grazing collisions of black holes with-

out spin have already been studied in the close limit ap-
proximation [27–29]. A comparison with the present work
should be possible and is under investigation. So far we
have used the Lazarus method [30,31] to assess how close
our data sets are to the perturbative regime. Lazarus pro-
vides an interface between full numerical relativity simu-
lations and perturbative evolutions on a Kerr background.
The question is after what time interval of full numerical
evolution a transition to the perturbative treatment can be
made. For our grazing collision data with vanishing spins,
this linearization time is found to be 4M. After 4M or
more of full numerical evolution time the radiated energy
as a function of the transition time levels off to a plateau
around 1.0%. This energy estimate of the Lazarus method
is consistent with the full numerical simulations. If the ini-
tial data are directly mapped into the perturbative method,
then the total radiated energy is about twice that amount.
Also, in terms of curvature invariants, there is a signifi-
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FIG. 5. Even and odd wave parts showing differences depend-
ing on high, medium, and low-J data.

cant deviation from Kerr initially. Some deviation is to
be expected for two black hole punctures, which further-
more are conformally flat. In any case, since the deviation
evolves away quickly, the initial data are fairly close to the
perturbative regime.

While it will be the waves that we can observe on earth
directly, it is also interesting to compute the apparent hori-
zon in the grazing BH collision. During the evolution we
use a 3D apparent horizon (AH) finder described in [32]
to track the location of the horizon. In principle, the event
horizon can also be located by techniques developed in
Ref. [33], but we do not yet know whether a single event
horizon is present on the initial slice in this data set. Fig-
ure 6 shows the AH during a grazing collision.

FIG. 6. The merger of the AH. Shown are marginally trapped
surfaces at times 2.5M , 3.7M , 5.0M , and 6.2M . The apparent
horizon is the outermost of these surfaces.
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FIG. 7. We show the evolution of Mir for the high-J configu-
ration. As the BHs merge, the area grows, and then begins to
level, as the final BH goes into the ringdown. But numerical
error associated with the grid stretching effects causes a spuri-
ous growth in the area, familiar in previous 2D and 3D studies.
However, one can estimate the mass of the final BH, as shown
by the dashed line.

We compute the BH mass MAH and compare with the
ADM mass of the initial data and the radiated energy to
assess the overall energy accounting. In Fig. 7, we
show the result of the calculation of the so-called
irreducible mass as a function of time, defined as
Mir �

p
areaAH�16p. The horizon mass MAH can be

determined through the formula M2
AH � �Mir �2 1

J2��2Mir �2, where we use J � 7.58m2 of the initial data.
The observed upward drift in Mir may be curable by
excision or better coordinate conditions, but even in the
present case we can estimate the final mass of the BH
to be Mir � 3.0m and MAH � 3.3m in this simulation.
Comparing this to the initial ADM mass of the spacetime,
M � 3.22m, we find consistency in the overall energy
accounting from independent physical measurements. The
fraction of the total energy, 1%, that is carried away in the
gravitational waves falls within the error estimate of this
energy balance.

In conclusion, these results indicate that for the first time
we are indeed able to simulate the late merger stages of
two BHs colliding, with rather general spin, mass, and
momenta, and that we can begin to examine the fine details
of the physics. Studies of apparent horizons, waveforms,
and asymptotic properties show consistency in the analy-
sis across strong field, near zone, and far field regions.
Without more advanced techniques, such as BH excision
and Lazarus, these simulations will be limited to the final
merger phase of BH coalescence. But while that is under
development, we can take advantage of our capabilities and
explore the merger phase of the inspiral now. It will be
important to have an understanding of details of the most
violent merger phase in advance, both as a testbed to ensure
that results are correct, and because the understanding we
gain may be useful in devising the appropriate techniques
for longer term evolution.
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