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We derive and investigate an expression for the dynamically modified decay of states coupled to an
arbitrary continuum. This expression is universally valid for weak temporal perturbations. The resulting
insights can serve as useful recipes for optimized control of decay and decoherence.
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The quantum Zeno effect (QZE), namely, the inhibition
of the decay of an unstable state by its (sufficiently fre-
quent) projective measurements, has long been considered
a basic universal feature of quantum systems [1]. Our gen-
eral analysis [2] has revealed the inherent impossibility of
the QZE for a broad class of processes, including sponta-
neous emission in open space, as opposed to the ubiqui-
tous occurrence of the anti-Zeno effect (AZE), i.e., decay
acceleration by frequent projective measurements [3]. Al-
though realistic schemes may well approximate such mea-
surements [2,4,5], there is strong incentive for raising the
question: Are projective measurements the most effective
way of modifying the decay of an unstable state? This
question is prompted by two important results: (a) A
landmark experiment has demonstrated, for the first time,
both the QZE and AZE by repeated on-off switching of the
coupling between a nearly bound state and the continuum,
using cold atoms that are initially trapped in an optical-
lattice potential [6]. (b) It has been predicted that periodic
coherent pulses, acting between the decaying level and an
auxiliary one, can either inhibit or accelerate the decay into
certain model reservoirs [7]. In both [6] and [7], the re-
peated interruption of the “natural” evolution is imperative
for decay modification.

In this paper we purport to substantially expand the ar-
senal of decay control, whether measurement-like (i.e., ac-
companied by dephasing) or fully coherent. We derive a
universal form of the decay rate of unstable states into any
reservoir (continuum), modified by weak perturbations with
arbitrary time dependence. The results of Refs. [2,3,6,7]
are recovered as limiting cases of this universal form. Our
analysis can serve as a general recipe for optimized de-
cay and decoherence suppression for quantum logic opera-
tions [8] or decay enhancement for the control of chaos or
chemical reactions [9].

Consider the decay of a state |e) via its coupling to a
system, described by the orthonormal basis {|j)}, which
forms either a discrete or a continuous spectrum (or a mix-
ture thereof). In its most general form, the total Hamilto-
nian is Hy + V() + H,(t), where

Hy = hwgle)lel + 5wl H{jl, (1)
J
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with fiw, and fiw; being the energies of |e) and | j), re-
spectively;

V(t) = D Vei(0)le)(jl + he., )
J

denoting the off—diagbnal coupling of |e) with the other
states, which is dynamically modulated, so as to modify
the static limit of V effecting the natural decay process;
and

Hi(1) = 8,1 leYel + Y 8;(0 )Gl (3
J

standing for the adiabatic (diagonal) time-dependent per-
turbations of the energies of the initial (|e)) and final (| j))
states, e.g., ac Stark shifts.

We write the wave function of the system, with |e)
populated at r = 0, as

|\I'(l‘)> _ a(t)e_iw"t_i fo Sa(t’)dt’|e>
+ S e T Ly gy
J

the initial condition being |W(0)) = |e). Henceforth we
treat the generic case wherein the level shifts and the
temporal modulation of V(¢) are independent of j, i.e.,
8;(t) = 84(t) and V(1) = &(t) e, &(t) being the modu-
lation function (Fig. 1, inset). Such a factorized form of
the modulation is commonly valid for weak or moderate
time-dependent fields, which do not appreciably change
the states of the continuum. One then obtains from the
Schrodinger equation that the amplitude «(#) obeys the
exact integro-differential equation [10]

& = —f di'e* (e Pt — e Da(t). (5)
0

Here ®(t) =h %% lieejl?e= @0, is the reservoir
response (memory) function and the function e(z) =
&(t)exp[—i [ 8ar(t) dr], with 8,5(1) = 8,(t) — 8¢(z),
accounts for the modulation of either diagonal or off-
diagonal elements of the unperturbed Hamiltonian.

The assumption that the coupling (2) is a weak pertur-
bation of (1) implies that «(r) varies sufficiently slowly
with respect to the kernel of Eq. (5), since we then an-
ticipate [cf. the validity condition (11)] decay rates much
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FIG. 1. Decay modification by modulation [Egs. (6), (7)]. In-
set: Schematic view of the temporal modulation of the shift of
level e and its coupling to a continuum. (a) w, is near a band
edge of G(w) = Cw'*(w + T')"'6(w), where 0(w) is the unit
step function; then small phase shifts (dashed peak) are more
effective in reducing the decay rate R than large phase shifts
¢ = 7 (dash-dotted peaks) or frequent measurements/random
€(t) (thin curve). (b) Decay rate R (in units of Rgr) in case
(a) with w, = 0.1T": reduction by PM [Eq. (10)] (curve 1:
¢ = 0.1; curve 2: ¢ = ) and frequent impulsive measure-
ments [2] (curve 3: QZE) as a function of perturbation period
7 (in units of T'~!). Curve 1 gives the strongest reduction of R
at a given 7.

smaller than the rate of change of the reservoir response
®(¢). One can thus make the approximation a(t’) = a(t)
on the right-hand side (rhs) of Eq. (5). Then one can solve
Eq. (5) and represent the amplitude modulus of level |e)
in the form

la(r)] = exp[—R(1)Q(1)/2], (6)

where we have introduced the fluence Q(7) = [ d7le(7)I?,
and obtained the decay rate in the universal form

R(t) = 277[ doGlw + w,)F;(w). @)
Here G(w) =7 'Re [y dte’'®(1) = F 23 |pejl? X
8(w — w;) is the coupling spectrum, i.e., the density
of states weighted by the strength of the coupling to the
continuum or reservoir; F,(w) = |e,(w)|*/0Q(t), with
e(w) = 2m)" V2 [ e(t)e'®" dr', is the (normalized to
unity) spectrum of the modulation function e(z) in the
“window” (0, t). The result (6), (7) is valid to all orders of
t, i.e., it keeps intact the interferences between the modu-
lated decay channels and their non-Markovian effects. We
stress that Eqs. (6), (7) apply to the decay of superposed
states Y ,, @y |en) (€.g., in quantum information schemes),
provided all of them decay and are modulated identically.

We now consider some important consequences of the
universal form (6), (7). The modulation spectrum F,(w)
is roughly characterized by its width v; and the frequency
shift A, = [dowF,(w). A modulation may strongly
modify the decay rate (analogously to the QZE or AZE)
whenever v, + |A;| = é(w,), where é(w,) is the charac-
teristic spectral interval over which the weighted density
of states G(w) changes near w,. In particular, if w, is
near the edge of the continuum (as for radiative decay in
photonic crystals or vibrational decay in ion traps, mole-
cules, and solids), then £(w,) is the distance between w,
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and the edge [2] (Fig. 1a). Only in the opposite limit, v, +
|A;| < &(w,), can one approximately set Fy(w) = &(w)
in Eq. (7), yielding P(t) = |a(t)|*> = exp[—Rcr QO (1)],
where Rgr = 27G(w,) is the extension of the golden-
rule (GR) rate to the case of a time-dependent coupling.
The modulation function €(z) can be either random or
regular (coherent) in time, as detailed below. Consider first
the most general coherent amplitude and phase modulation
(APM) of the quasiperiodic form, e(f) = D>, e e '@,
Here w; (k = 0,*1,...) are arbitrary discrete frequen-
cies with the minimum spectral distance (). For a given
function €(¢) one can obtain —iw; and €; as the poles
and residues, respectively, of the Laplace transform é(s).
If €(r) is periodic with the period (), then w; = k) and
€ become the Fourier components of €(¢). For a general
quasiperiodic €(¢), one obtains
y ei(wl—(uk)t -1

Q1) = €t + € > M| —F———
¢ C,;kl i(w; — wp)
where €2 = >, |ec|* equals the average of |e(¢)|? over a

period of the order of 1/Q, A,y = €;/€., and

le(@)? = €26 > |A2S(net/2)
k

1+ ei(wl—(uk)t — eimd — p—imt

)

+e2 ) MAS
¢ ](Z:#] 2

)
Here 7y = w — wy, whereas S(ngt/2) = 2sin*(ngt/2)/
771‘7],% is a sinc function of 7; normalized to 1.

For ¢t > ! the first term on the ths of (9) is a sum
of peaks, whose spacings are much greater than their
width 2/¢. The fast oscillating second term is also peaked
at w = wy, but we then find that the ratio of the first to
the second terms, and that of their counterparts in (8), is
~(Q1t)"! < 1. In the long-time limit, we then neglect
these fast oscillating terms and obtain from Egs. (6)—(9)
that P(t) = exp[—R(t)et], where R(¢) in Eq. (7) now
involves F,(w) = X, |Ax|>S(nxt/2). For even longer
times, exceeding the effective correlation (memory) time
of the reservoir, t. = max{l/&é(w, + wy)}, the func-
tions S(n,t/2) become narrower than the respective char-
acteristic widths of G(w) around w, + wy, and one can
set S(mxt/2) = 8(ni). Then Eq. (7) is reduced to

R =27 IM*Gwa + wp), (10)
k

which holds if

Rt, < 1. (11)

This condition is well satisfied in the regime of interest,
i.e., weak coupling to essentially any reservoir, unless (for
some k) w, + w; is extremely close to a sharp feature
in G(w), e.g., a band edge. Hence, the long-time limit of
the general decay rate (7) under the APM is a sum of the
GR rates, corresponding to the resonant frequencies shifted
by wy, with the weights |Az|?. Formula (10) provides a
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simple general recipe for manipulating the decay rate by
APM. Its powerful generality allows for the optimized
control of decay, not just for a single level, but also for
band characterized by a spectral distribution P(w,) (e.g.,
inhomogeneous or vibrational spectrum). We can then
choose Ay and wy, in Eq. (10) so as to minimize the decay
of (6) convoluted with P(w,). The following limits of (10)
will be now analyzed.

(i) Monochromatic perturbation: Let e(f) = ege %/,
Then R = 27G(w, + A), where A = 6,7 = const is an
ac Stark shift. In principle, such a shift may drastically
enhance or suppress R relative to Rgr. It provides the
maximal variation of R achievable with an external per-
turbation, since it does not involve any averaging (smooth-
ing) of G(w) incurred by the width of F,(w): the modified
R can even vanish, if the shifted frequency w, + A is be-
yond the cutoff frequency of the coupling, where G(w) =
0 (Figs. 1a, 1b). Conversely, the increase of R due to a
shift can be much greater than that achievable with the
AZE [2]. In practice, however, ac Stark shifts are usu-
ally small for (CW) monochromatic perturbations, whence
pulsed perturbations should often be used, resulting in mul-
tiple wy shifts according to (10).

(i1) Impulsive phase modulation (PM): Let the phase
of the coupling amplitude jump by an amount ¢ at times
7,27,.... Such modulation can be achieved by a train
of identical, equidistant, narrow pulses of nonresonant
radiation, which produce pulsed ac Stark shifts 8,¢(¢) in
(3). Now €(r) = €il//71% where [...] is the integer part.
One then obtains that €, = 1 and Q(¢) = ¢. The decay
is given by Egs. (6) and (7), where F;(w) can be ob-
tained in a closed form. For sufficiently long times one
can use Eq. (10). The poles and residues of é(s) =
(1 — e *7)/[s(1 — e'®757)] yield wy = 2kw/7 — ¢ /T
and |A¢|? = 4sin*(¢/2)/ k7 — ¢)*. For small phase
shifts, ¢ < 1, the k = 0 peak dominates, |[Ag|> = 1 —
$?/12, whereas |Ai|? = ¢?/4mw%k? for k # 0. In this
case one can retain only the £k = 0 term in Eq. (10)
[unless G(w) is changing very fast]. Then the modulation
acts as a constant shift A = —¢ /7. With the increase
of ||, the difference between the k = 0 and k = 1
peak heights diminishes, vanishing for ¢ = *a. Then
[Aol? = |A1]? = 4/72, ie., Fi(w) for ¢ = =7 contains
two identical peaks symmetrically shifted in opposite di-
rections (Fig. 1a) [ the other peaks |A;|> decrease with k
as (2k — 1)72, totaling 0.19].

The above features allow one to adjust the modulation
parameters for a given scenario to obtain an optimal de-
crease or increase of R. The PM scheme with a small ¢
is preferable near the continuum edge (Figs. 1a,1b), since
it yields a spectral shift in the required direction (positive
or negative). The adverse effect of k # 0 peaks in F,(w)
then scales as ¢2 and hence can be significantly reduced
by decreasing |¢|. On the other hand, if w, is near a sym-
metric peak of G(w), R is reduced more effectively for
¢ = m, as in Ref. [7], since the main peaks of F;(w) at
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wo and | then shift stronger with 77! than the peak at
wy = —¢/7 for ¢ < 1.

(ii1) Amplitude modulation (AM) of the coupling arises,
e.g., for radiative-decay modulation due to atomic motion
through a high-Q cavity or a photonic crystal [12] or for
atomic tunneling in optical lattices with time-varying lat-
tice acceleration [6,13]. Let the coupling be turned on
and off periodically, for the time 71 and 79 — 71, respec-
tively, i.e., e = 1 forntg <t < ntg + 7y and € = 0 for
ntg + 1 <t<@m+ )rg(n=0,1,...). Now Q(¢) in
(6) is the total time during which the coupling is switched
on. This case is also covered by Eq. (10), where the pa-
rameters are now found to be €2 = 11/79, wy = 2k7 /79,
|A0l?> = 71/70, IM|? = (71/70)sinc? (ka7 /7o) (k # 0).

It is instructive to consider the limit wherein 7| << 7
and 7 is much greater than the correlation time of the
continuum, i.e., G(w) does not change significantly over
the spectral intervals [27k/79,27(k + 1)/79]. In this
case one can approximate the sum (10) by the integral (7)
with F;(w) = (1,/2)sinc?(w 7, /2), characterized by the
spectral broadening ~1/7; (Fig. 2, inset). Then Eq. (7)
for R reduces to that obtained when ideal projective mea-
surements are performed at intervals 7 [2].

Thus the AM scheme can imitate measurement-induced
(dephasing) effects on quantum dynamics, if the interrup-
tion intervals 79 exceed the correlation time of the
continuum. This indeed has been observed [6] for atom
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FIG. 2. Tunneling of sodium atoms in optical lattices per-
turbed by AM scheme: the decay probability P(¢) as a function
of the total coupling time. Curves 1, 4: decay without modula-
tion. Curve 2: QZE (decay slowdown compared to curve 1) for
71 =0.8 us, 7o = 50.8 us. Curve 3: AZE (decay speedup com-
pared to curve 4) for 7 = 2 us, 79 = 52 ws. Inset: The cou-
pling spectrum G(w + w,) and the scaled modulation function
T~ ?F4;,(w) for the conditions of curve 2. Here T = w,d/ma,
where a = 15 km/s? is the lattice acceleration and d = 295 nm
is the lattice period. w, = 91 kHz, w,T = 2.05 (for curves 1,
2,5); wg =116 kHz, w,T = 3.32 (for curves 3, 4).
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tunneling in optical lattices whose tilt (acceleration) was
periodically modulated as above. For its analysis we have
used the approximate expression for ®(¢) obtained in [13],
which yields the reservoir spectrum G(w + w,) (Fig. 2,
inset), with one maximum at w ~ w,, hw, being the
lattice band gap. The decay probability P(z), calculated
in Fig. 2 (curves 1—-4) for parameters similar to [6], com-
pletely coincides with that obtained for ideal impulsive
measurements at intervals 7; [2] and demonstrates either
the QZE (curve 2) or the AZE (curve 3) behavior.

The universal Eq. (7), which is a result of unitary analy-
sis, is valid also when €(¢) is a stationary random process.
If such a process is characterized by the correlation time
v~1, one can use a master equation to show that, for >
v~ !, we have P(t) = e ®', where the decay rate (provided
that R << v) still has the general form (7), but with

Fi(w)— F(w) = 7 'e.? Re[DO e*(1)e(0)e'®" dt,
0
(12)

F(w) being the normalized spectrum of the random
process and eg = |e(#)|?, where the overbar denotes en-
semble averaging. Expression (7) with the substitution
(12) is completely analogous to the universal formula de-
scribing measurement effects on quantum evolution in [2].
This analogy between unitary and measurement effects
stems from the ability to emulate projective measurements
by the dephasing of the level evolution caused by classical
random fields [2,5].

There may, however, be a notable difference between
projections and random-field dephasing. Projective mea-
surements at an effective rate v, whether impulsive or
continuous, usually result in a broadened (to a width v)
modulation function F(w), without a shift of its center
of gravity, A = [dwwF(w) = 0 [2,4]. This feature was
shown [2] to be responsible for either the standard QZE
scaling, R ~ 1/v, or the AZE scaling. In contrast, a weak
and broadband chaotic field such that |y|/ < vp, where
1 is the mean intensity, vp is the bandwidth, and y is
the effective polarizability, would give rise to a Lorentzian
dephasing function F(w) in (12) with a substantial shift
A = xI. This shift would have a much stronger ef-
fect on R than the QZE or AZE caused by the width
v ~ )(272/1/3 < |Al.

We have presented here a general theory of dynami-
cally modulated quantum decay, which offers new insights
into the possibilities of controlling its non-Markovian dy-
namics by off-resonant electromagnetic fields. Its unified
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form (6), (7) encompasses, as special cases, all the modu-
lation schemes of current interest, satisfying the factoriza-
tion condition [cf. Eq. (5)] [6,7,14]. Whereas its limit (12)
may imitate measurement effects (the QZE and AZE), the
modulation or spectral-shift parameters allow us to “en-
gineer” (suppress or enhance) more effectively the decay
into a given reservoir. Thus, measurements are shown to
have no advantage as a means of either suppressing or en-
hancing decay compared to APM. Moreover, the coher-
ent nature of APM makes it much more appropriate than
measurements for decoherence suppression in quantum
information applications, which require reversible trans-
formations of quantum superposed states.
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