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We study the Berezinskii-Kosterlitz-Thouless transition in a weakly interacting 2D quantum Bose gas
using the concept of universality and numerical simulations of the classical jcj4 model on a lattice.
The critical density and chemical potential are given by relations nc � �mT�2p h̄2� ln�jh̄2�mU� and
mc � �mTU�p h̄2� ln�jm h̄2�mU�, where T is the temperature, m is the mass, and U is the effective
interaction. The dimensionless constant j � 380 6 3 is very large and thus any quantitative analysis
of the experimental data crucially depends on its value. For jm our result is jm � 13.2 6 0.4. We also
report the study of the quasicondensate correlations at the critical point.
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An accurate microscopic expression for the critical
temperature of the Berezinskii-Kosterlitz-Thouless (BKT)
transition [1] has been a weak point of the theory of
weakly interacting two-dimensional (2D) Bose gas. The
theory of Ref. [2] (see also [3,4] and analysis below)
suggests that the critical density of the BKT transition in
the weakly interacting system reads (we set h̄ � 1)

nc �
mT
2p

ln
j

mU
. (1)

The relation between the effective long wavelength inter-
action U and microscopic potential V �r� is provided by the
2D quantum scattering theory with self-consistent momen-
tum cutoff of logarithmic renormalization at the inverse in-
terparticle separation [2]

U �
V0

1 1 �mV0�4p� ln�1�ncd2�
, (2)

where V0 is the zero-momentum Fourier component of
V �r�, and d is the potential radius. In quasi-2D systems
V0 and d depend also on the confining geometry and the
3D scattering length [3,5] (after projecting the third direc-
tion out).

Unfortunately, the value of j is outside existing analyti-
cal treatments since it is related to the system behavior
in the fluctuation region where perturbative expansions in
powers of U do not work. With unknown j, one finds
Eq. (1) rather inaccurate unless mU is exponentially small.
Moreover, as we find in this Letter, the value of j is very
large: j � 380. In this connection we mention that the
answer for the extremely dilute system [when mU � 4p�
ln�1�ncd2�],

nc �
mT
2p

�ln�j�4p� 1 ln ln�1�ncd2�� , (3)

never acquires its known limiting form [4], nc �
�mT�2p� ln ln�1�ncd2�, in realistic systems, because it is
impossible to have ln�1�ncd2� ¿ j�4p � 30. Thus for
all experimentally available up to date (quasi-)2D weakly
interacting Bose gases [6,7] the quantitative analysis of
the data for the critical ratio nc�Tc in terms of microscopic
0031-9007�01�87(27)�270402(4)$15.00
parameters requires a precise value of j. In the system
of spin-polarized atomic hydrogen on helium film [6], the
value of mU is of order unity [3]; in the recently created
quasi-2D system of sodium atoms [7], mV0 is of order
1022, according to the formula of Ref. [5].

To quantitatively describe the limit of small U, it is
sufficient to solve a classical-field jcj4 model with the
effective long-wave Hamiltonian [2]

H�c� �
Z Ω

1
2m

j=cj2 1
U
2

jcj4 2 m0jcj2
æ

dr , (4)

where m0 is the chemical potential and c is the classical
complex field. By replacing the quantum model with the
classical one, we stop quantum renormalizations of U by
brute force. The justification for this procedure is in the
logarithmically slow dependence of U on momentum and
can be taken into account a posteriori, as U dependence
on either density or temperature [2]; see Eq. (2).

In this Letter, we first discuss the origin of relation (1)
in the limit of small U and how quantum and classical
models relate to each other. Then we present our numeric
results (for the critical density, chemical potential, and qua-
sicondensate correlations) obtained by simulations of the
2D jcj4 model on a lattice using recently developed Worm
algorithm [8] for classical statistical models. We show
that quasicondensate correlations are very strong at Tc, in
agreement with the experiments on spin-polarized atomic
hydrogen [6] and quantum Monte Carlo simulations [9].

Simple order-of-magnitude analysis of Eq. (4) allows us
to write a generic formula for the critical point in a weakly
interacting 2D jcj4 model. The routine itself is analogous
to the 3D case (see, e.g., [10,11]), but final results naturally
reflect specific properties of 2D systems. We begin with
introducing the mode-coupling momentum, kc, that char-
acterizes the onset of strong nonlinear coupling between
long-wave harmonics of c�r� (harmonics with k ¿ kc are
almost free). This momentum is just the inverse of the
healing length, or vortex core radius, rc [1]. We denote by
ñ the contribution to the total density due to strongly cou-
pled harmonics and introduce the renormalized chemical
© 2001 The American Physical Society 270402-1
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potential

m̃ � m0 2 2U
Z

k.kc

n
�ideal�
k d2k��2p�2 (5)

by subtracting the mean-field contribution of noninteract-
ing high-momentum harmonics. Here nk � �jckj

2�, and
�. . .� stands for the statistical average.

The Nelson-Kosterlitz formula [12]

ns �
2mT

p
(6)

provides an estimate for ñ since it is intuitively expected
that ñ 	 ns. An independent estimation of the fluctuation
region parameters derives by equating all three terms in
Eq. (4),

k2
c�m 	 jm̃j 	 ñU , (7)

and relating ñ 	
P

k,kc
nk 	 k2

cnkc
to the renormalized

chemical potential by using T�jm̃j in place of the occu-
pation number nkc . By definition, kc separates strongly
coupled and free harmonics, and thus nkc 	 T��k2

c�2m 2

m̃� 	 T�jm̃j. The order-of-magnitude estimations are (at
T � Tc)

ñ 	 mT , (8)

kc 	 m�UT�1�2, (9)

m̃ 	 UmT . (10)

We are now in a position to derive Eq. (1). In 2D
the main contribution to the particle number integral n �R

nk d2k��2p�2 comes from large momenta between kc

and some model-dependent ultraviolet scale k�. For clas-
sical lattice models it is given by the inverse lattice spacing,
k� 	 1�a; in the continuous quantum system k� 	

p
mT

is the thermal momentum. At kc ø k ø k� we have
nk � 2mT�k2, and thus we can write

nc �
mT

2p
ln�Ck2

��k2
c� , (11)

where C is some constant. Critical density, Eq. (1), for the
quantum Bose gas is obtained by substituting Ck2

��k2
c 


jmT�m2UT � j�mU.
The dependence on the ultraviolet cutoff reflects differ-

ences between ideal systems, while the long-wave behav-
ior of all weakly interacting jcj4 theories is universal. This
fact allows one to relate results for different models by
adding/subtracting noninteracting contributions; i.e., up to
higher order corrections in U the difference between mod-
els A and B is given by �n�A�

c 2 n�B�
c � �

R
�n�ideal A�

k 2

n
�ideal B�
k � d2k��2p�2. In what follows, we denote the clas-

sical lattice model with lattice spacing a as system A and
analyze results using

n�lat�
c �

mT

2p
ln

A

m2a2UT
. (12)
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The actual system of interest is the quantum Bose gas,
so we add and subtract the corresponding ideal-system
contributions to get

ln
A

jma2T
�

1
2pmT

µZ
BZ

T d2k

E�k�
2

Z d2k

ek2�2mT 2 1

∂
,

(13)

where BZ means that the first integral is over the Brillouin
zone, and E�k� is the dispersion law for the ideal lattice
model such that E�k ! 0� ! k2�2m. [The divergences
of the two integrals in Eq. (13) at k ! 0 compensate each
other.]

Our simulations were done for the simple square lattice
Hamiltonian

H �
X

k[BZ

�E�k� 2 m� jckj
2 1

U
2

X
i

jci j
4, (14)

where ck is the Fourier transform of the complex lattice
field ci and E�k� � �2 2 cos�kxa� 2 cos�kya���ma2 is
the tight-binding dispersion law. With this dispersion re-
lation the right-hand side in (13) can be evaluated analyti-
cally and we obtain the “conversion” formula

j � A�16 . (15)

Since final results for dimensionless constants do not de-
pend on m, T , and a, in numerical simulations we set
a � 1, T � 1, and m � 1�2 for convenience.

The above consideration for the critical density can be
readily generalized to the critical chemical potential, with
the result

mc �
mTU

p
ln

jm

mU
. (16)

First, we notice that Eq. (16) immediately follows from
Eqs. (10) and (5) because the mean-field term is propor-
tional to 2�mUT�p� ln�mU� (we actually deal with ex-
actly the same integral). Since the renormalized value
m̃ is universal, to account for the difference between the
classical and quantum models one has to add and sub-
tract mean-field contributions dominated by the ideal be-
havior. Thus, if the classical model is analyzed using
mc � �mTU�p� ln�Am�m2a2UT�, one has to apply jm �
Am�16 to get the quantum result, Eq. (16).

We now turn to our numerical procedure. To simu-
late the grand-canonical ensemble corresponding to the
Hamiltonian (14) we employ the classical Worm algorithm
Ref. [8] that has demonstrated its efficiency for the analo-
gous problem in 3D [11]. The formal criterion of the criti-
cal point for the system of linear size L is based on the
exact Nelson-Kosterlitz relation (6): We say that the sys-
tem is at the critical point if its superfluid density, ns�L�,
satisfies ns�L� � 2mT�p [ns�L� has a direct estimator in
the Worm algorithm via statistics of winding numbers [8],
and its autocorrelation time does not suffer from critical
slowing down].
270402-2
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The finite-size scaling of nc�L� is well known from the
Kosterlitz-Thouless renormalization group theory [1]

nc�L� � nc 2
A0mT

ln2�A00Lm�UT �1�2�
, (17)

where A0 and A00 are dimensionless constants. A simi-
lar relation applies also to the critical chemical potential.
Equation (17) was used for the finite-size scaling analysis.
We found that instead of extrapolating data for each value
of U to the L ! ` limit independently, a much more effi-
cient procedure is to perform a joint finite-L and finite-U
analysis. To this end we heuristically introduce parame-
ters accounting for nonuniversal finite-U corrections by
adding linear in U terms to each of the three of the dimen-
sionless constants: A ! A 1 BU, A0 ! A0 1 B0U, and
A00 ! A00 1 B00U. We thus have six fitting parameters to
describe all our data points [13]. The data for nc�U, L�
and mc�U, L� are presented in Fig. 1. The fitting proce-
dure yields A � �6.07 6 0.05� 3 103, Am � �211 6 6�,
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FIG. 1. Critical density and chemical potential for various cou-
pling parameters and system sizes. Typical error bars are much
smaller than symbol sizes. The dotted line is the fitting function
described in the text.
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which, according to Eq. (15), means that

j � 380 6 3, jm � 13.2 6 0.4 . (18)

The fit is extremely good: 20 points for the critical density
at U # 2.5 and Lm�UT�1�2 . 15, each calculated with
relative accuracy of order 1024, are described with the
confidence level of 62%.

Experiments on helium films report that the ratio
ns�Tc��ns�0� � ns�Tc��nc � 2mTc�pnc is close to 0.75
[14,15]. Our result for this ratio is given by

ns�Tc��nc �
4

5.94 2 ln�mU�
, (19)

and mU � 1.8 is required to describe helium films, pro-
vided the small-U approximation for nc may be pushed
that far [16]. We are not aware of the published data on
the critical chemical potential. [For helium and hydrogen
films on substrates one has to shift mc by the value of the
absorption energy (for the delocalized atom, in the case of
helium film), mc ! mc � E0 1 �mTU�p� ln�jm�mU�.
In thermal equilibrium this quantity can be readily mea-
sured through the chemical potential of the bulk vapor.]

In the absence of long-range order parameter, 2D sys-
tems below Tc are characterized by the local correlation
properties of the quasicondensate density, identical to those
of a system with genuine condensate [3]. These properties
reflect the specific structure of the c field:

c�r� � c0�r� 1 c1�r� , (20)

c0�r� �
p

n0 eiF�r�, (21)

where the quasicondensate density n0 may be considered
as a constant, and c1 is the Gaussian field independent of
c0. Both experiment [6] and model Monte Carlo simu-
lations [9] indicate that in 2D systems with mU 	 1 the
quasicondensate correlations appear well above Tc and are
pronounced at Tc. Below we show that this is a generic
feature of weakly interacting jcj4 models.

It is convenient to characterize the quasicondensate
properties by the correlator

Q � 2�jcj2�2 2 �jcj4� . (22)

The Gaussian component of the field obeys the Wick’s
theorem and does not contribute to Eq. (22). If, for a mo-
ment, by c1 we understand short-wave harmonics of c,
we conclude that only long-wave and strongly nonlinear
harmonics with the momenta k 	 kc contribute to the cor-
relator Q, i.e., Q 	 ñ2. Thus, we expect that all weakly
interacting jcj4 models satisfy

Q � C�m2T 2 �T � Tc� (23)

in the limit of small U, where C� is a universal constant.
By definition, n0 �

p
Q.

The finite-size and small-U analysis of the data for
Q�U , L� was done in complete analogy with previously
discussed cases of nc�U, L� and mc�U, L� (see Fig. 2 and
270402-3
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FIG. 2. Quasicondensate correlations as a function of system
size. The dotted line is to guide the eye.

Ref. [13]). We found that

C� � 1.30 6 0.02 . (24)

The ratio between n0�T � Tc� and nc describes how pro-
nounced are the quasicondensate correlations in the Bose
gas at the BKT point:

n
�T�Tc�
0

nc
�

2p
p

C�

ln�j�mU�
�

7.16
5.94 1 ln�1�mU�

. (25)

We see that it is of order unity unless mU is exponentially
small. Another interesting ratio is

n0

ns
�

p
p

C�

2
� 1.79 �T � Tc� , (26)

which is interaction independent and shows that the super-
fluid density is substantially smaller than the quasiconden-
sate density at Tc.

Finally, we derive an accurate estimate for the mode-
coupling radius rc. In an ideal system Q 
 0. Hence,
Q�L� should decrease with decreasing L, and for system
sizes L 	 rc it has to drop significantly from its ther-
modynamic value. We rather formally define rc from
Q�L � rc� � Q�L ! `��2 and from Fig. 2 obtain rc �
2�m�UT �1�2.

We conclude by noting that the Nelson-Kosterlitz for-
mula (6) and Eqs. (1), (16), and (23) constitute a com-
plete set of equations which allow us to fully determine
system parameters from measurements with independent
cross-checks. We are not aware of another study where
270402-4
dimensionless constants j, jm, and C� were determined
with high precision.
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